UNIT -1
INTRODUCTION to DBMS (Part -I)

o Introduction
o What is a database management system?
o Why study databases? Why not use file systems?
o The three-level architecture
o Schemas and instances
e Overview
o Data models, E-R model, Relational model
Data Definition Language, Data Manipulation Language
SQL
Transaction Management, Storage Management
User types, database administrator
System Structure

0O O O O O

1.1 What is a Database Management System?

Data
e Data is raw fact or figures or entity.
e When activities in the organization takes place, the effect of these activities need to be recorded
which is known as Data.
Information
e Processed data is called information
e The purpose of data processing is to generate the information required for carrying out the
business activities.
Database
e Database may be defined in simple terms as a collection of data
e A database is a collection of related data.
Database Management System
e A Database Management System (DBMS) is a collection of program that enables user to create
and maintain a database.
e The DBMS is hence a general purpose software system that facilitates the process of defining
constructing and manipulating database for various applications.
e History
o 1950s-60s: magnetic tape and punched cards

o 1960s-70s: hard disks, random access, file systems
o 1970s-80s: relational model becoming competitive
o 1980s-90s: relational model dominant, object-oriented databases
o 1990s-00s: web databases and XML
Why Study Databases?

e They touch every aspect of our lives
e Applications:
o Banking: all transactions
Airlines: reservations, schedules
Universities: registration, course enrolment, grades
Sales: customers, products, purchases
Manufacturing: production, inventory, orders, supply chain
Human resources: employee records, salaries, tax deductions
Telecommunications: subscribers, usage, routing
Computer accounts: privileges, quotas, usage

O 0O O O O O O

o Records: climate, stock market, library holdings
e Explosion of unstructured data on the web:

o Large document collections

o Image databases, streaming media

1.2 Why not use file systems?

e Data redundancy and inconsistency
o Multiple file formats
o Duplication of information in different files

o Difficulty in accessing data
o Need to write a new program to carry out each new task

e Data isolation
o Multiple files and formats

o Integrity problems
o Integrity constraints (e.g. account balance > 0) become part of program code
o Hard to add new constraints or change existing ones

e Maintenance problems
o When we add a new field, all existing applications must be modified to ignore it

e Atomicity of updates
o Failures may leave database in an inconsistent state with partial updates carried out
o E.g. transfer of funds from one account to another should either complete or not happen at all

e Concurrent access by multiple users
o Concurrent accessed needed for performance
o Uncontrolled concurrent accesses can lead to inconsistencies
= E.g. two people reading a balance and updating it at the same time
o Security problems

Database systems offer solutions to all the above problems

Advantages of DBMS.

v Due to its centralized nature, the database system can overcome the disadvantages of the file system-
based system

1. Data independency: Application program should not be exposed to details of data representation
and storage DBMS provides the abstract view that hides these details.

2. Efficient data access: DBMS utilizes a variety of sophisticated techniques to store and retrieve data
efficiently.

3. Data integrity and security: Data is accessed through DBMS, it can enforce integrity constraints.
E.g.: Inserting salary information for an employee.

4. Data Administration: When users share data, centralizing the data is an important task, Experience
professionals can minimize data redundancy and perform fine tuning which reduces retrieval time.

5. Concurrent access and Crash recovery: DBMS schedules concurrent access to the data. DBMS
protects user from the effects of system failure.

1.3 The Levels of Abstraction

e Physical level: how a record is stored on disk

o Logical level: describes data stored in database, and the relationships among the data.
e type customer = record

name : string;

street : string;

city : integer;
end;

e View level: application-specific selections and arrangements of the data
¢ hide details of data types
e Views can also hide information for security reasons

view level

view 1 view 2 e view n

logical
level
I
physical
level

1.4 Schemas vs. Instances

e Schema

@)
@)

©)

the logical structure of the database.

e.g., the database consists of information about a set of customers and accounts and the
relationship between them.

Analogous to type information of a variable in a program.

e Instance

©)
©)

the actual content of the database at a particular point in time.
Analogous to the value of a variable.

e Data Independence

o

©)
©)

the ability to modify a schema in one-level (i.e. Internal Schema or Conceptual Schema)
without affecting a schema in the next-higher-level (i.e. Conceptual or External schema)
Applications depend on the logical schema
Database engines take care of efficient storage and query processing
Data independence are of two types:
= Physical Data Independence: Physical data independence is the ability to modify the
physical schema — i.e. internal schema which describes the physical storage devices or
structure to store the data — without affecting the conceptual schema — application
programs.
= Logical Data Independence: Logical data is the ability to modify the logical schema —
1.e. Conceptual Schema, which decides what information is to be kept in the database
— without affecting the next higher level schema — i.e., External Schema — application
program.

1.5 Data Models

e A collection of tools for describing
o data
o data relationships
o data semantics
o data constraints
e The data models are divided into different groups
o Object-Based Logical Data Models
o Record-Based Logical Data Models

» Object-Based Logical Model

o Object — based logical models are used in describing data at logical level and view level.
Logical and view levels are used to retrieve the data.
o Object-Based Logical Models are described in the different following models:
v" The Entity-Relationship Model
v Object-Oriented Model

B Entity-Relationship Model

e An entity is a thing or object in the real world that is distinguishable from other objects.

e The Entity — Relationship Model is based on a collection of basic objects, called entities, and
the relationship among these objects.

e Example of schema in the entity-relationship model

customer-nanie customer-street account-number balance

customer depositor accoumnt

Rectangles represent entities

Diamonds represent relationship among entities

Ellipse represents attributes

Lines represents links of attributes to entities to relations

B Object-Oriented Model

e Like the E-R model, the Object-Oriented Model is based on a collection of objects. An object
contains values stored in instance variables, within the object also contains bodies of code
that operates on the object. These bodies of code are called as methods.

e Objects that contain the same types of values and the same methods are grouped together into
classes. A class may be viewed as a definition for objects. This combination of data and
methods comprising a definition is similar to a Programming-language abstract data type.

e The only way in which one object can access the data of another object is by invoking a
method of that other object. This action is called sending a message to the object.

* & o o

> Record-Based Logical Models

. Describes data at logical and view levels.
. Compared with object-based data models, the record-based logical models specify the overall
logical structure of the database and provide higher level implementation.
o Relational Model

B Relational Model

J The relational model represents both data (entities) and relationships among in the form of
tables. Each table has multiple columns and each column has a unique name.

Attributes
m Example of tabular data in the relational model/:/,/
Customeria | customer [customer [customer | aceount
192-83-7455 A Alma Palo Alto A-101
019-28-3T745 Smith Morth Rye A5
Uit AL Alma Palo Alto A0
FIZ21-12-3123 Jones M ain Mo B2 1T
019-28-3745 Smith Morth Rye 201

e The description of data in terms of tables is called as relations, from the above Customer and
Accounts relations, we can make a condition that customer details are maintained in Customer table
and their deposit details are maintained in the account table database.

1.6 DATABASE LANGUAGES

SQL language is divided into four types of primary language statements: DML, DDL, DCL
and TCL. Using these statements, we can define the structure of a database by creating and altering
database objects, and we can manipulate data in a table through updates or deletions. We also can
control which user can read/write data or manage transactions to create a single unit of work.

e The four main categories of SQL statements are as follows:
1. DML (Data Manipulation Language)
2. DDL (Data Definition Language)
3. DCL (Data Control Language)
4. TCL (Transaction Control Language)

SQL Language Statements

DML DDL DCL TCL
SELECT CREATE GRANT BEGIN
INSERT ALTER REVOKE TRAN
UPDATE DROP COMMIT
DELETE TRAN

ROLLBACK

Here we Discuss only DDL and DML

B Data Definition Language (DDL)

. Specification notation for defining the database schema
o E.g
create table account (
account-number char(10),
balance integer)

e DDL compiler generates a set of tables stored in a data dictionary:
o Database schema
o Specification of storage structures and access methods

B Data Manipulation Language (DML)

. Language for accessing and manipulating the data organized by the appropriate data model
o DML also known as query language
. Two classes of languages
o Procedural — user specifies what data is required and how to get those data
o Nonprocedural — user specifies what data is required without specifying how to get
those data
. SQL is the most widely used query language

1.7 Overall System Structure of DBMS
e The following figure shows the structure supporting parts of a DBMS with some simplification based
on the relation data model.

e A DBMS is divided into two modules (parts)
o Query processor
o Storage Manager

users

tellers, agents,
(analysts)

web-users)

administrator

database l

naive users
(pProgramimers

sophisticated }

[application

use write muse use

application application query administraticn
interfaces programs tools tools

——— — — —— — — 4 cal — — — — -
/—/ cnn'i]i::rllf;rand = DML queries DDL interpreter
application / ‘L
program DML compiler
object code and organizer
query evaluation
engine
! / query processor
L — — — = _ = — — — — — —
buffer manager | | file manager | aul:l'u‘_‘bri.zati‘on transaction
and integriby manager
manager
/ storage manager

disk storage

| data dictionary |

\—(statistical data |

B Query Processor

The Query processor components are:
o DDL Interpreter: This interprets DDL statements and records the definitions in the data dictionary.
o DML Compiler: as any other compiler, DML Compiler converts the DML Statements into low-level
instructions.
o Query Evaluation: This executes low-level instructions generated by the DML compiler.

relational algebra
expression

< Gptimizie>

execution plan

parser and
translator

query

evaluation engine
output &

3

data statistics
about data

B Storage Manager

e A storage manager is a program module that provides the interface between the low-level data stored in the
database and the application programs and queries submitted to the system.
o The storage manager is responsible for storing, retrieving and updating data in the database.

o The storage manager components include:

o Authorization and integrity Manager: This tests for the satisfaction of integrity constraints and
checks the authority of users to access data.

o Transaction Manager: This ensures that the database remains in a consistent state despite system
failures, and that concurrent transaction executions proceed without conflicting.

o File Manager: This manages the allocation of space on disk storage and the data structures used to
represent information stored on disk.

o Buffer Manager: This is responsible for fetching data from disk storage into main memory, and
deciding what data to cache in main memory.

o The storage manager implements several data structures as part of the physical system implementation:

o Data Files: This store the database itself.

o Data Dictionary: This stores metadata about the structure of the database, in particular the schema of
the database.

o Indices: This provides fast access to data items that hold particular values.

> Database Users

° Users are differentiated by the way they expect to interact with the system

Application programmers — interact with system through DML calls

Sophisticated users — form requests in a database query language

Specialized users — write specialized database applications that do not fit into the traditional
data processing framework

Naive users — invoke one of the permanent application programs that have been written
previously

YV VYVVY

E.g. people accessing database over the web, bank tellers, clerical staff

Database Administrator

Coordinates all the activities of the database system; the database administrator has a good
understanding of the enterprise’s information resources and needs.

Database administrator's duties include:

Schema definition

Storage structure and access method definition

Schema and physical organization modification

Granting user authority to access the database

Specifying integrity constraints

Acting as liaison with users

Monitoring performance and responding to changes in requirements

0O O O O O O O

Transaction Management

A transaction is a collection of operations that performs a single logical function in a database
application
o E.g. transfer funds from one account to another

Transaction-management component ensures that the database remains in a consistent state despite
system failures

Concurrency-control manager controls the interaction among the concurrent transactions, to ensure
the consistency of the database.
o E.g. simultaneous withdrawals

ACID Properties:

A - Atomicity / Accessing the Data

C - Concurrency Access

I - Integrity Problems / Inconsistency

D - Data Redundancy

UNIT -1
ENTITY-RELATIONSHIP MODEL (Part -11)

Topics :

Entity Sets

Relationship Sets

Mapping Constraints

Keys

E-R Diagram

Extended E-R Features

Design of an E-R Database Schema
Reduction of an E-R Schema to Tables

AN N N N NN

B Entity Sets

A database can be modeled as:

o a collection of entities,
o Relationship among entities.
e An entity is an object that exists and is distinguishable from other objects.
o E.g. specific person, company, event, plant
e Entities have attributes
o E.g: people have names and addresses
e An entity set is a set of entities of the same type that share the same properties.
o) Example: set of all persons, companies, courses, books

o Entity Sets customer and loan

[321-12-3123 [Jones | Main | Harrison | L-17

[1000]
[019-28-3746 [Smith | North |Rye | 2

(117]
| 677-89-9011 [Hayes [Main [Harrison | 500

[555-55-5555 JJackson | Dupont|Woodside] 1500
[244-66-8800 [Curry | North [Rye | L-19| 500
[963-96-3963] Williams| Nassau | Princeton] L11] 900]
[335-57-7991 [Adams [Spring | Pittsfield |

customer loan

e Attributes

An entity is represented by a set of attributes that is descriptive properties possessed by all members
of an entity set.
Domain — the set of permitted values for each attribute
Attribute types:
Simple and composite attributes.

Simple Attribute

Single-valued and multi-valued attributes
E.g. multi valued attribute: phone-numbers

Multi valued Attribute

https://i1.wp.com/www.edugrabs.com/wp-content/uploads/2015/07/Multivalued-Attribute-Types-of-Attributes-in-DBMS.png

Derived attributes
Can be computed from other attributes
E.g. age, given date of birth

Derived attributes

Key Attribute
Represents primary key. (main characteristics of an entity). It is an attribute, that has distinct value for
each entity/element in an entity set. For example, Roll number in a Student Entity Type.

Key Attribute
e Composite Attributes

Composite name address

N N

first-name middle-initial last-name street city state postal-code

Component
Attributes

street-number street-name upartment—number

Relationship and Relationship Set :

Relationships connect the entities and represent meaningful dependencies between them. It represents an
association among several entities.

Relationships sets is a set of relationships of the same type. It is a mathematical relation on entity sets
(n>=2). Relationship set R is a subset of —

{(r1,r2,r3,....r»)| r1€EL, r2€E2, r,€E,}

where r1,12,....1; are called relationships and E1,E2,....E, are entity sets.
The way in which two or more entity types are related is called relation type.

For example, consider a relationship type WORKS_FOR between the two entity types EMPLOYEE and
DEPARTMENT, which associates or links each employee with the department the employee works for.
The WORKS_FOR relation type is shown as —

EMPLOYEE WORKS_FOR DEPARTMENT

https://i1.wp.com/www.edugrabs.com/wp-content/uploads/2015/07/Derived-Attribute-Types-of-Attributes-in-DBMS.png
https://i2.wp.com/www.edugrabs.com/wp-content/uploads/2015/07/Key-Attribute.png

In the above figure, each instance of relation type WORKS FOR i.e.(rl, r2,...,r5) is connected to instances
of employee and department entities. Employee el, €2 and e5 work for department d2 and employee e3 and
e4 work for department d1.

Notation to Represent Relation Type in ER Diagram-

Relation types are represented as diamond shaped boxes. <>

Degree of a Relationship Type-

The number of participating entity types is known as the degree of relationship type.
Types of Relationship Type Based on Degree —

o Binary Relationship — A relationship type of degree two is called binary relationship. The
WORKS_FOR in above figure is a binary relationship as there are two participating entities-
employee and department.

EMPLOYEE WORKS_FOR DEPARTMENT
el
e2 \'

a3 ‘Il

ad J

/

el

o Ternary Relationship- A relationship type of degree three is a ternary relationship for
example, in the below figure supply relationship connects three entities SUPPLIER, PART AND
PROJECT.

SUPPLIER SUPPLY PROJECT
ji

"

The above diagram can be read as — a supplier supplies the parts to projects

o N-ary Relationship Set — A relationship type of degree n is called n ary relationship . For
example

Attributes of R —-= Primary Key of all Entities

Role Names-

A relationship type has a name which signifies what role a participating entity plays in that relationship
instance. The role names helps to explain what the relationship means.

In the first example WORKS_FOR relationship type, employee plays the role of worker and department
plays the role of employee(because a department consists of a number of employees.

Recursive Relationship

If the same entity type participate more than once in a relationship type in different roles then such
relationship types are called recursive relationship. For example, in the below figure REPORTS_TO is
a recursive relationship as the Employee entity type plays two roles — 1) Supervisor and 2) Subordinate.

EMPLOYEE

SUPERVISOR SUBORDINATE

REPORTS_TO

e Mapping Cardinalities
e Express the number of entities to which another entity can be associated via a relationship set.
e Most useful in describing binary relationship sets.
e For a binary relationship set the mapping cardinality must be one of the following types:

e One-to-One Cardinality (1:1)

e One-to-Many Cardinality (1:m)
e Many-to-One Cardinality (m:1)
e Many-to-Many Cardinality (m:n)

¢ Notations of Different Types of Cardinality In ER Diagram —

o =

ONE-TO-ONE CARDINALITY MANY-TO-ONE CARDINALITY
ONE-TO-MANY CARDINALITY MANY-TO-MANY CARDINALITY

e Mapping Cardinalities affect ER Design

* Can make access-date an attribute of account, instead of a relationship attribute, if each account can
have only one customer
o ILe., the relationship from account to customer is many to one,

account (account-number, access-date)
customer (customer-name)

depositor_| "A101] 24 May 1996 |
— A-215] 3June 19% |
— A-102] 10 June 199 |
- A-305] 28 May 199 |
~{ A-201 [17 June 199 |

Jones ><__| A-222] 24 June 1996 |
Lind
indsay _I AD17 | 23 May 1996 |

Hayes

Turner

2 e
8
5

e E-R Diagrams

customer-name)) (customer-street

loan-number w

custormer-id customer-city

customer borrower loan

* Rectangles represent entity sets.
* Diamonds represent relationship sets.
« Lines link attributes to entity sets and entity sets to relationship sets.
» Ellipses represent attributes
o Double ellipses represent multivalued attributes.
o Dashed ellipses denote derived attributes.
* Underline indicates primary key attributes

¢ E-R Diagram with Composite, Multi valued, and Derived Attributes

o Composite attributes: The attributes that can be divided into subparts are known as
composite attributes. Ex: name can be divided into first name, middle name and last name.

o Multi valued attributes: The attributes that have many values for a particular entity. Ex:
name. There can be more than one name for customer.

o Derived attribute: The value for this type of attribute can be derived from the values of
other related attributes or entities.

street-name >
< middle-initial >

T T . T
T — — apartment-number
T /_\(\street number > (\L/ T >
— —~ =~ 7
rst-name < last-name ~ -
fi > \ > o P

— s
T\ /// (/ t ¢ &) — '7,‘1 \}
-~ . stree ci
C name D — ///(_J//
——— — I
— T __C address >—C_ state O
< customer-id e ~ e T - 2T
e

/// \\\ \\\
e . —
- —
- —
~—

[eustomer | b
customer ST T
~ Czipzcode

(& phone-number > <__date-of-birth __> < _Aage
T I —

¢ Relationship Sets with Attributes

access-date

nccount-number

customer-name>) (customer-stree
custonter-id customer-city

customer

depositor account

e Entity sets of a relationship need not be distinct

e The labels “manager” and “worker” are called roles; they specify how employee entities
interact via the works-for relationship set.

e Roles are indicated in E-R diagrams by labeling the lines that connect diamonds to
rectangles.

e Role labels are optional, and are used to clarify semantics of the relationship.

employee—id telephorte-riurmber
. manager
| employee | lcworks—for
) worker

B Cardinality Constraints

e We express cardinality constraints by drawing either a directed line (—), signifying “one,” or an
undirected line (—), signifying “many,” between the relationship set and the entity set.
e E.g.: One-to-one relationship:
o A customer is associated with at most one loan via the relationship borrower
o A loan is associated with at most one customer via borrower

customer-name loan-number w

customer-id

customer borrower loan

customer-streel

¢ One-To-Many Relationship

e In the one-to-many relationship a loan is associated with at most one customer via borrower, a
customer is associated with several (including 0) loans via borrower

customer-name’) (customer-streel loan-number w
customer-id customer-city

customer borrower

loan

¢ Many to One Relationship

e In a many-to-one relationship a loan is associated with several (including 0) customers via borrower,
a customer is associated with at most one loan via borrower

customer-name
customer-id customer-city

loan-number amount

borrower

Many to Many Relationship

customer-name) (customer-street
customer-id customer-city

customer

loan-number w

borrower loan

A customer is associated with several (possibly 0) loans via borrower
A loan is associated with several (possibly 0) customers via borrower

Participation of an Entity Set in a Relationship Set

Total participation (indicated by double line): every entity in the entity set participates in at least one
relationship in the relationship set
o E.g. participation of loan in borrower is total
= Every loan must have a customer associated to it via borrower.

Partial participation: Some entities may not participate in any relationship in the relationship set.
o E.g. participation of customer in borrower is partial

customer-street

custormer-city

customer-name
loan-number
customer-id w

customer borrower loan

Keys

A super key of an entity set is a set of one or more attributes whose values uniquely determine each
entity.
A candidate key of an entity set is a minimal super key

o Customer-id is candidate key of customer

o account-number is candidate key of account
Although several candidate keys may exist, one of the candidate keys is selected to be the primary
key.

Keys for Relationship Sets

The combination of primary keys of the participating entity sets forms a super key of a relationship
set.

o (customer-id, account-number) is the super key of depositor

o NOTE: this means a pair of entity sets can have at most one relationship in a particular

relationship set.
= E.g. if we wish to track all access-dates to each account by each customer, we cannot
assume a relationship for each access. We can use a multi valued attribute though

Must consider the mapping cardinality of the relationship set when deciding the what are the
candidate keys
Need to consider semantics of relationship set in selecting the primary key in case of more than one
candidate key

E-R Diagram with a Ternary Relationship

employee-id lo ee-id @

employee bmnch

Cardinality Constraints on Ternary Relationship

We allow at most one arrow out of a ternary (or greater degree) relationship to indicate a cardinality
constraint
E.g. an arrow from works-on to job indicates each employee works on at most one job at any branch.
If there is more than one arrow, there are two ways of defining the meaning.

o E.g aternary relationship R between A, B and C with arrows to B and C could mean

o 1. each A entity is associated with a unique entity from B and C or

o 2. each pair of entities from (A, B) is associated with a unique C entity, and each pair

(A, C) is associated with a unique B
o Each alternative has been used in different formalisms
o To avoid confusion we outlaw more than one arrow

Design Issues

Use of entity sets vs. attributes : Choice mainly depends on the structure of the enterprise being
modeled, and on the semantics associated with the attribute in question.

Use of entity sets vs. relationship sets: Possible guideline is to designate a relationship set to describe
an action that occurs between entities.

Binary versus n-ary relationship sets : Although it is possible to replace any nonbinary (n-ary, for n
> 2) relationship set by a number of distinct binary relationship sets, a n-ary relationship set shows
more clearly that several entities participate in a single relationship.

Placement of relationship attributes

¢ Summary of Symbols Used in E-R Notation

E Entity Set @ Atribute Many to Many Many to One
Relationship Relationship
Multivalued
Weak Entity Set Attribute
One to One Lh g | Cardinality
pp— Relationship Limits
Relationghip Set L . L‘A_‘ -) Derived Attribute
role- .
ISA
Identifying Total name e
’ icator Specialization or
Relationship p | Participation < :) Role Indicator ? &gle;al;zatim) 1
@ Set for Weak of Entity Set
Entity Set in Relationship
Discriminat Total Disjoint
iscriminating Generalization Generalization
Primary Key Attribute of disjoint
Weak Enfity Set

B Extended E-R Features

Weak entity sets
Specialization
Generalization
Aggregation

0 O O O

¢ Weak Entity Sets
Assumption: entity sets always have a key
o This is not always true
e Examples:
o Dependents covered by an employee’s insurance policy
o Film crews working at a movie studio
o Species within a genus
e Properties
o Weak entity set lacks a key
o Existence of weak entities depends on existence of corresponding entities in the
“identifying entity set”
= ie. the participation of the weak entity in the database is only by virtue of its
relationship to the identifying entity
= E.g. we’re not interested in film crews except insofar as they are associated with a
movie studio (an idiosyncratic property of our enterprise).
e Definition: An entity set that does not have a primary key

e The existence of a weak entity set depends on
o the existence of a identifying entity set
o must relate to the identifying entity set via a total, many-to-one relationship set
o Identifying relationship depicted using a double diamond

We depict a weak entity set by double rectangles.

We underline the discriminator of a weak entity set with a dashed line.
payment-number — discriminator of the payment entity set

Primary key for payment — (loan-number, payment-number)

> S

payment- -number payment-amount

loan loan-payment payment

Note: the primary key of the strong entity set is not explicitly stored with the weak entity set, since it
is implicit in the identifying relationship.

If loan-number were explicitly stored, payment could be made a strong entity, but then the
relationship between payment and loan would be duplicated by an implicit relationship defined by
the attribute loan-number common to payment and loan.

B Specialization

Top-down design process
Start with few entity sets having many attributes
E.g. person entity may have attributes suitable for students, lecturers, employees, employers, etc.

we identify distinctive sub-groupings within an entity set These sub-groupings become lower-level
entity sets

They have attributes or participate in relationships that do not apply to the higher-level entity
set

Depicted by a triangle component labeled ISA

E.g. customer ‘“is a” person

Inheritance

a lower-level entity set inherits all the attributes and relationship participation of the higher-
level entity set to which it is linked.

Specialization Example

ISA
‘ employee | ‘ customer ‘
ISA
officer teller secretary |

hours—worked

station-number

Generalization

A bottom-up design process
o start with lots of distinct entities that share attributes
o Combine a number of entity sets that share the same attributes into a higher-level entity
set.
Specialization and generalization are simple inversions of each other; they are represented in an E-R
diagram in the same way.

Specialization and Generalization

Can have multiple specializations of an entity set based on different features.
E.g. permanent-employee vs. temporary-employee, in addition to officer vs. secretary vs. teller.
Each particular employee would be

o a member of one of permanent-employee or temporary-employee,

o and also a member of one of officer, secretary, or teller

The ISA relationship also referred to as super-class - subclass relationship.
Design Constraints on a Specialization/Generalization

Constraint on which entities can be members of a given lower-level entity set.
o condition-defined
= E.g. all customers over 65 years are members of senior-citizen entity set; senior-
citizen ISA person.
o user-defined

Constraint on whether or not entities may belong to more than one lower-level entity set within a
single generalization.
o Disjoint
= an entity can belong to only one lower-level entity set
= write disjoint next to the ISA triangle
o Overlapping
= an entity can belong to more than one lower-level entity set

Completeness constraint
o Does an entity in the higher-level entity set have to belong to at least one of the lower-level
entity sets?

Total
o an entity must belong to one of the lower-level entity sets

Partial
o an entity need not belong to one of the lower-level entity sets
Aggregation

Consider the ternary relationship works-on
Suppose we want to record managers for tasks performed by an employee at a branch.
works-on and manages represent overlapping information
= Every manages relationship corresponds to a works-on relationship
= some works-on relationships may not correspond to any manages relationships
= we can’t discard the works-on relationship

e FEliminate this redundancy via aggregation

@)
@)

Treat works-on relationship as an abstract entity
Allow relationships between relationships!

e Abstraction of relationship into new entity
e Without introducing redundancy, the following diagram represents:

@)
@)

An employee works on a particular job at a particular branch
An employee, branch, job combination may have an associated manager

= E-R Diagram with Aggregation

employee

job

job

branch
@ employee %]{s—on} branch
manages
mun@

ey manager

B E-R Design Principles

e Faithfulness

@)
@)

Entities, attributes and relationships should reflect reality
Sometimes the correct approach is not obvious
= E.g. course and instructor entities and teaching relationship
= What are the cardinality constraints? It depends...

¢ Avoiding Redundancy

©)

No information should be repeated
= Wastes space, leads to consistency problems

e Simplicity

o

Some relationships may be unnecessary
= E.g. student member-of student-body attends course vs student attends course

e Choosing the right kind of element

©)
©)

The use of an attribute or entity set to represent an object
Whether a real-world concept is best expressed by an entity set or a relationship set

e Choosing the right relationships

o

©)
©)
©)

The use of a ternary relationship versus a pair of binary relationships

The use of a strong or weak entity set.

The use of specialization/generalization — contributes to modularity in the design.

The use of aggregation — can treat the aggregate entity set as a single unit without concern for
the details of its internal structure.

= E-R Diagram for a Banking Enterprise

s

- employment-"+

branch-name fssets

branch

A

loan-branch

customer-name

payment-date
payment nuni

loan-
payment

customer

payment

overdraft-amount

-~ legth _ .-

Reduction of an E-R Schema to Tables

Primary keys allow entity sets and relationship sets to be expressed uniformly as tables which
represent the contents of the database.

A database which conforms to an E-R diagram can be represented by a collection of tables.

For each entity set and relationship set there is a unique table which is assigned the name of the
corresponding entity set or relationship set.

Each table has a number of columns (generally corresponding to attributes), which have unique
names.

L 4

¢

Converting an E-R diagram to a table format is the basis for deriving a relational database design

from an E-R diagram.
Representing Entity Sets as Tables

A strong entity set reduces to a table with the same attributes.

| customer-id | customer-name | custommer-street | customer-city |

019-28-3746 Smith North Rye

182-73-6091 Turner Putnam Stamford
192-83-7465 Johnson Alma Palo Alto
244-66-8800 Curry North Rye

321-12-3123 Jones Main Harrison
335-57-7991 Adams Spring Pittsfield
336-66-9999 Lindsay Park Pittsfield
677-89-9011 Hayes Main Harrison
963-96-3963 Williams Nassau Princeton

Composite and Multivalued Attributes

Composite attributes are flattened out by creating a separate attribute for each component attribute
= E.g. given entity set customer with composite attribute name with component attributes
first-name and last-name the table corresponding to the entity set has two attributes

name.first-name and name.last-name

A multivalued attribute M of an entity E is represented by a separate table EM
= Table EM has attributes corresponding to the primary key of E and an attribute

corresponding to multivalued attribute M

= E.g. Multivalued attribute dependent-names of employee is represented by a table

employee-dependent-names(employee-id, dname)

= Each value of the multivalued attribute maps to a separate row of the table EM

= Eg, an employee entity
dependents Johnson and
(John, Johnson) and (John, Johndotir)

Representing Weak Entity Sets

with
Johndotir

primary

John
two

and
rOWS:

key

maps to

A weak entity set becomes a table that includes a column for the primary key of the identifying

strong entity set

125
500
300
135

50

50
100

75
900
200

| loan-number | payment-number | payment-date | payment-amount
L-11 53 7 June 2001
L-14 69 28 May 2001
L-15 22 23 May 2001
L-16 58 18 June 2001
L-17 5 10 May 2001
L-17 6 7 June 2001
L-17 7 17 June 2001
L-23 11 17 May 2001
L-93 103 3 June 2001
L-93 104 13 June 2001

¢ Representing Relationship Sets as

e A many-to-many relationship set is represented as a table with columns for the primary keys of the
two participating entity sets, and any descriptive attributes of the relationship set.
e E.g.: table for relationship set borrower

| customer-id | loan-number |

019-28-3746 L-11
019-28-3746 L-23
244-66-8800 L-93
321-12-3123 L-17
335-57-7991 L-16
555-55-5555 L-14
677-89-9011 L-15
963-96-3963 L-17

1.13 Conceptual Design with ER Model

e Developing an ER diagram presents several design issues, including the following:
o Entity versus Attribute.

Entity versus Relationship

Binary versus Ternary Relationships.

Aggregation versus Ternary Relationships.

o O O

B Entity versus Attribute

e While identifying the attributes of an entity set, it is sometimes not clear, whether a property should be
modeled as an attribute or as an entity set.

e Example: consider the entity set employee with attributes employees name and telephone number. It can
easily be said that a telephone is an entity in its own right with attributes telephone number and location.
If we take this point of views, the employee entity set must be redefined as follows:

o The employee entity set with attribute employee name.

o The telephone entity set with attributes telephone number and location.

o The relationship set employee telephone, which denotes the association between employees
and the telephones that they have.

e The main difference between these two definitions of an employee is as follows:

o In the first case, the definition implies that every employee has one telephone number
associated with him.

o In the second case, the definition implies that all employees may have several telephone
number associated with them.

e Thus, the second definition is more general than the first one, and may more accurately reflect the real
world situation. Even if we are given that each employee has only one telephone number associated with
him, the second definition may still be more appropriate because the telephone is shared among several
employees.

e However, it is appropriate to have employees-name as an attribute of the employee entity set instead of
an entity because most of the employees have single name.

B Entity versus Relationship

It is not always clear whether an object is best expressed by an entity set or a relationship set.

Example: assume that, a bank loan is modeled as an entity. An alternative is to model a loan not as an
entity, but rather as a relationship between customers and branches, with loan number and amount as
descriptive attributes. Each loan is represented by a relationship between a customer and a branch.

If every loan is held by exactly one customer and customer is associated with exactly one branch, we
may find satisfactory the design, where a loan is represented as a relationship. But, with this design, we
cannot represent conveniently a situated in which several customers hold a loan jointly. We must define
a separate relationship for each holder of the joint loan. Then, we must replicate the values for the
descriptive attributes loan-number and amount in each such relationship. Each such relationship must of
course, have the same value for the descriptive attributes loan number and amount.

Two problems arise as a result of the replication:

o The data are stored multiple times, wasting storage space.
o Updates leave the data in an inconsistent state.

One possible guideline is determining whether to use an entity set or a relationship set to designate a
relationship set, an action that occurs between entities. This approach can also be useful in deciding
whether certain attributes may be more appropriately expressed as relationships.

Binary versus ternary Relationships

It is always possible to replace a non-binary (n-ary, for n>2) relationship set by a number of distinct
binary relationship sets.

Example: for simplicity, consider the abstract ternary (n=3) relationship set R, relating entity sets A, B,
C. We replace the relationship set R by an entity set E, and create three relationship sets:

Ra, relating E and A
Rg, relating E and B
Rc, relating E and C

If the relationship set R has any attributes, these are assigned to entity set E; otherwise, a special
identifying attribute is created for E. For each relationship (aj, b;, ¢;) in the relationship set R, we create a
new entity e; in the entity set E.
Then, in each of the three new relationship sets, we insert a relationship as follows:

* (e, ai) in Ra

* (ej, b)) in Rp

* (eq, ¢i) in Rc

We can generalize this process in a straight forward manner to n-ary relationship sets. Thus,
conceptually, we can restrict the E-R model to include only binary relationship sets.

Aggregation versus Ternary Relationships

The choice between using aggregation or a ternary relationship is mainly determined by the existence of
a relationship that relates a relationship set to an entity set. The choice may also be guided by certain
integrity constraints that we want to express.

Example: consider the constraint that each sponsorship be monitored by at most one employee. We can
express this constraint in terms of the sponsors relationship set. On the other hand, we can easily express
the constraint by drawing an arrow from the aggregated relationship sponsors to the relationship

Monitors. Thus, the presence of such a constraint servers as another reason for using aggregation rather
than a ternary relationship set.

1.14 Conceptual Design for Large Database

e Designing database for large organization takes efforts of more than a single designer. It
diagrammatically represents the complete database and enables the user who provides inputs to database,
to understand the complete functionality of database.

e Large databases are modeled in two methodologies.

o The requirements of all the users are collected. The conflicting requirements are resolved and a
final conceptual view is generated to satisfy the requirements of all users.

o In the other method, the user provides his requirements; the designer generates a conceptual view
for the requirements. Likewise all the conceptual views from all user requirements are generated
and a comprehensive conceptual view that satisfies all the requirements is generated.

CASE STUDY

How to Draw ER Diagram ??

We have read all the basic terms of E-R Diagram. Now, let's understand how to draw E-R diagram? In ER
Model, objects of similar structures are collected into an entity set. The relationships between an entity sets
is represented by a named E-R relationship, which may be (one-to-one, one-to-many, many-to-one,
many-to-many), which maps one entity set to another entity set. A General ER Diagram is shown as-

E The linked image cannot b displayed. The fle may have been moved, renamed, o deleted, Verly that the Ik paints to the corectfile and location,

In Figure, there are two entities ENTITY-1 and ENTITY-2 having attributes (Atrii, Atryz, ... Atrim) and
(Atrz1, Atrzz, ... Atra,) respectively, connected via many to many relationship (M:N). The attributes of
RELATIONSHIP are (Atrri, Atrgz, ... Atrro).

Steps - How to Draw ER Diagram -

1. Identify all the entities of the given problem

2. Identify all the attributes of the entities identified in step 1.

3. Identify the Primary Keys of entities identified in Step 1.

4. Identify the Attribute Types of attributes identified in step 2

5. Identify relationship between the entities and constraints on the entities and implement them.
Need of ER Diagram -

The ER Diagrams are useful in representing the relationship among entities. It helps to show basic data
structures in a way that different people can understand. Many types of people are involved in the database
environment, including programmers, designers, managers and end users. But not all of these people work
with database and might not be as skilled as others to understand the making of a software or a program etc,
so, a conceptual model like the ERD helps show the design to many different people in a way they can all
understand.

http://www.edugrabs.com/wp-content/uploads/2015/07/HOW-TO-MAKE-ERD.bmp

Example of drawing ER Diagram -

How to draw E-R diagram of a company database if the following requirements are given : Question : Make an
ER Diagram for the company database with the following description :

1. The company is organized into departments. Each department has a unique name and a unique
number. A department may have several locations.

2. A department controls a number of projects, each of which has a unique name, a unique number and a
single location.

3. We store each employee's name, social security number, address and salary. An employee is assigned to
one department but may work on several projects, which are not necessarily controlled by the same
departments.

4. We want to keep track of the departments of each employee for insurance purposes. We keep each
dependent's name, age and relationship to the employee.

Answer :

Step 1 : Identifies Entities of the given problem.

Entities :

1. DEPARTMENT (From 1st Point)
2. PROJECT (From 2nd Point)

3. EMPLOYEE (From 3rd Point)
4. DEPENDENT (From 4th Point)

Step 2 : Identify the attributes of the above entities.

Attributes :

1. DEPARTMENT : Name, Number, Location;
2. PROJECT : Name, Number, Location;

3. EMPLOYEE : SSN, Name, Address, Salary
4. DEPENDENT : Name, Age, Relationship

Step 3 : Identify the Primary Keys of all entities identified in Step 1.

Primary Keys :

1. DEPARTMENT : Name, Number, Location; (Unique Name and Unique Number)

2. PROJECT : Name, Number, Location; (Unique Name and Unique Number)

3. EMPLOYEE : SSN, Name, Address, Salary (Since, Social Security Number will be Unique, so SSN
is selected as primary Key)

4. DEPENDENT : Name, Age, Relationship (No Unique Attribute to identify DEPENDENT entity.
So, It is referred as a Weak Entity)

Step 4: Identify the Attribute Types -

Attributes Types :

1. Location Attribute of DEPARTMENT entity :

Multi valued Attribute (Since there are several locations)

2. Name Attribute of EMPLOYEE entity :

Composite Attribute (since a name consists of first name, middle name and last name)

3. Address Attribute of EMPLOYEE entity :

Composite Attribute (Address consists of H.no, Street, City, State, Country)

Step 5 : Identify the Relationships and relationships attributes between the entities.

Relationships and their Attributes :

Relationship Name Entities Name having Attributes
relationships among them

1. Works_For EMPLOYEE and DEPARTMENT -

2. Control DEPARTMENT and PROJECT -

3. Works_On EMPLOYEE and PROJECT Hours

4. Dependents_Of EMPLOYEE and DEPENDENT -

Step 6: Identify the constraints on the entities.

Cardinality Constraints :

Relationship Cardinality Reason

1. Works_For N:1 Since N employees Works_For a Department.

2. Works_On M:N Since different employees works on different
projects.

3. Control 1:N Since a department Controls a number of projects.

4. Dependents_Of 1:N Since each Dependents has name, age and

relationship to the employee.
Implementation of ER Diagram of the given problem on the basis of above steps :

Fname @ mmber,
m Name
Lname Name

EI&-IE'LDYEF' DEPARTMENT

1

Muname

N
M

Relationslap

Relational Algebra

Chapter 4, Part A

Database Systems, R. kri and I. Gehrke

\Relutional Query Languages

« Query languages: Allow manipulation and retrieval
of data from a database.
+ Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
- Allows for much optimization.
+ Query Languages != programming languages!
- QLs not expected to be “Turing complete”.
- QLs not intended to be used for complex calculations.
- QLs support easy, efficient access to large data sets.

Database Systems, R. and J. Gehrke 2

\Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

o Relational Algebra: More operational, very
useful for representing execution plans.

@ Relational Calculus: Lets users describe what
they want, rather than how to compute it.
(Non-operational, declarative.)

@ Understanding Algebra & Calculus is key to
@ understanding SQL, query processing!

and J. Gehrke

Database Systems, R. ki

\Preliminuries

+ A query is applied to relation instances, and the
result of a query is also a relation instance.
~ Schemas of input relations for a query are fixed (but
query will run regardless of instance!)
~ The schema for the result of a given query is also
fixed! Determined by definition of query language
constructs.
« Positional vs. named-field notation:

- Positional notation easier for formal definitions,
named-field notation more readable.

R sid bid day
Example Instances 22 101 10710196
\ 58103 11/12/96

+ “Sailors” and “Reserves” . .
relations for our examples. S1 sid Snan.le rating age
+ We'll use positional or 22 dustin 7 45.0
named field notation, 31 lubber 8 55.5
assume that names of fields 58 rusty 10 35.0
in query results are
‘%nher‘{ted’ from namesof o, sid
fields in query input
. 28
relations.

sname rating age

yuppy 9 35.0
31 lubber 8 55.5
44 guppy | 5 35.0
58 rusty 10 35.0

and J. Gehrke

Database Systems, R.

- Both used in SQL
Database Systems, R. and J. Gehrke 4
Relational Algebra

+ Basic operations:
- Selection (O') Selects a subset of rows from relation.
- Projection (7T) Deletes unwanted columns from relation.
- Cross-product (X) Allows us to combine two relations.
- Set-difference (—) Tuples in reln. 1, but not in reln. 2.
- Union (Y) Tuplesin reln. 1 and in reln. 2.
+ Additional operations:
- Intersection, join, division, renaming: Not essential, but
(very!) useful.
% Since each operation returns a relation, operations

can be composed! (Algebra is “closed”.)
Database Systems, R. eris and J. Gehrke

‘ sname rating

Projection yuppy 9 |
\lubber 8 ‘

+ Deletes attributes that are not in ‘ ppy 5 ‘
projection list. lrusty 10 |

« Schema of result contains exactly
the fields in the projection list,
with the same names that they
had in the (only) input relation.

(52)

T .
sname,rating

% Projection operator has to

eliminate duplicates! (Why??) ‘ age |
- Note: real systems typically ‘35-0 |
don’t do duplicate elimination ‘55.5 |
unless the user explicitly asks
for it. (Why not?) T ag e(S 2)
Database Systems, R. kri and I. Gehrke 7

[sid 'sname rating age |

\Selectzon 28 yuppy 9 320 |

|58 rusty |10 35.0 |
+ Selects rows that satisfy
selection condition. . (S2)
rating>8

£

> No duplicates in result!
(Why?)

s Schema of result

identical to schema of

(only) input relation.

£

sname rating ‘
yuppy 9

% Result relation can be " 10 ‘
the input for another rusty

relational algebra

: T (O S2
opera‘npp! (Operator sname, ratmg(rating> 8()
composition.)

Database Systems, R. and J. Gehrke 8

Union, Intersection, Set-Difference

‘sid sname rating age

+ All of these operations take ‘22 dustin 7 45.0
two input relations, which |31 lubber 8 55.5
must be union-compatible: |58 rusty 10 35.0

- Same number of fields. |44 guppy 5 35.0
- “Corresponding’ fields 28 yuppy 9 35.0
have the same type. StuS2

« What is the schema of result?
‘sid sname rating age

Cross-Product
+ HBach row of S1 is paired with each row of R1.

% Result schema has one field per field of S1 and R1,
with field names “inherited” if possible.

- Conflict: Both S1 and R1 have a field called sid.

‘(sid) sname rating age (sid) bid day

| 22 dustn 7 450 22 101 10/10/96
| 22 dusin 7 450 58 103 11/12/%
| 31 lubber 8 555 22 101 10/10/9
| 31 lubber 8 555 58 103 11/12/9
| 58 rusty 10 350 22 101 10/10/%
| 58 rusty 10 350 58 103 11/12/9%

& Renaming operator: p (C(1— sidl,5— sid2), SIXR1)

Database Systems, R. and J. Gehrke 10

sid sname rating age | 31 jubber 8 55.5
|22 dustin 7 450 | |58 rusty 10 35.0
S1-52 SINS2
Database Systems, R. 153t and T. Gehrke 9

Joins

« Condition Join: R>< cS =0 (RXS)

‘(sid) sname rating age (sid) bid day ‘

|22 dustin 7 450 58 103 11/12/96 |
|31 lubber 8 555 58 103 11/12/96 |
S g1sia < Rusia K1

« Result schema same as that of cross-product.

+ Fewer tuples than cross-product, might be
able to compute more efficiently

+ Sometimes called a theta-join.
Database Systems, R. i and J. Gehrke 11

\]oins
% Equi-Join: A special case of condition join where
the condition ¢ contains only equalities.

‘sid sname rating age bid day ‘

22 dustin 7 450 101 10/10/9% |
58 rusty 10 350 103 11/12/96 |

SI>< sid Rl
% Result schema similar to cross-product, but only
one copy of fields for which equality is specified.

% Natural Join: Equijoin on all common fields.

Database Systems, R. krish and]. Gehrke 12

Division

+ Not supported as a primitive operator, but useful for
expressing queries like:
Find sailors who have reserved all boats.
% Let A have 2 fields, x and y; B have only field y:
- AB= {{x)] 3(x,y)eA V(y) e B}
- i.e., A/B contains all x tuples (sailors) such that for every y
tuple (boat) in B, there is an xy tuple in A.
- Or: If the set of y values (boats) associated with an x value
(sailor) in A contains all y values in B, the x value is in A/B.
% In general, x and y can be any lists of fields; y is the
list of fields in B, and xUy is the list of fields of A.

Database Systems, R. kri and I. Gehrke 13

\Examples of Division A/B

sno pno [pno | |pno | ‘pno ‘

sl pl p2 | }p2 } }pl }

sl p2 B1 p4 p2

sl p3 B2 p4 |

sl p4 B3

s2 pl lsno |

s2 p2 Is1 |

s3 p2 \52 \ ‘SHO ‘

4 p2 3| sl | sno |

s4 p4 |sd4 | 4| sl |
A A/B1 A/B2 A/B3

Database Systems, R. and J. Gehrke 14

\Expressing A/B Using Basic Operators

+ Division is not essential op; just a useful shorthand.
~ (Also true of joins, but joins are so common that systems
implement joins specially.)
« Idea: For A/B, compute all x values that are not
“disqualified’ by some y value in B.
- x value is disqualified if by attaching y value from B, we
obtain an xy tuple that is not in A.

Disqualified x values: 7 (T ,.(A)XB)—A)
A/B: T, (A) — alldisqualified tuples

Database Systems, R. kri and I. Gehrke 15

{nd names of sailors who’ve reserved boat #103

< Solution1: =« Reserves)>< Sailors)

sname (@ 103

% Solution2: p (Templ, o Reserves)

bid=103
p (Temp2, Templ >< Sailors)
(Temp2)

z sname

+Solution3: 7 (Reserves>< Sailors))

sname'© pig =103

Database Systems, R. and J. Gehrke 16

\Find names of sailors who've reserved a red boat

+ Information about boat color only available in
Boats; so need an extra join:

T Boats)>< Reserves>< Sailors)

(e}
sname(color="red’

<+ A more efficient solution:

V4 Boats) >< Res)>< Sailors)

sname® sid((”bid O-L‘olor:’ red’

& A query optimizer can find this given the first solution!

Database Systems, R. i and J. Gehrke 17

ind sailors who've reserved a red or a green boat

+ Can identify all red or green boats, then find
sailors who've reserved one of these boats:

p (Tempboats, (o , Boats))

color="red’ v color="green
T snameLempboats>< Reserves>< Sailors)

% Can also define Tempboats using union! (How?)

+ What happens if Vv isreplaced by A in this query?

Database Systems, R. krish and]. Gehrke 18

%d sailors who've reserved a red and a green boat

Previous approach won’t work! Must identify
sailors who've reserved red boats, sailors
who've reserved green boats, then find the
intersection (note that sid is a key for Sailors):

p (Tempred, ﬂ-sid((acolorfred’Boms)x Reserves))

p (Tempgreen, ”si d ((O-color:’green’Bgms)X Reserves))

T ((Tempred N Tempgreen)>< Sailors)

sname

and J. Gehrke

Database Systems, R. ki

%d the names of sailors who ve reserved all boats

+ Uses division; schemas of the input relations
to / must be carefully chosen:

p (Tempsids, (ﬂ'sid’bidReserves) / (ﬂ-bid Boats))

V4 (Tempsids>< Sailors)

sname

« To find sailors who've reserved all ‘Interlake’ boats:
..... B
¥4 bi d(oats)

Database Systems, R.

(9
bname = Interlake’

and J. Gehrke 20

\Summary

% The relational model has rigorously defined
query languages that are simple and
powerful.

+ Relational algebra is more operational; useful
as internal representation for query
evaluation plans.

% Several ways of expressing a given query; a
query optimizer should choose the most
efficient version.

and J. Gehrke

Database Systems, R. ki

Relational Calculus

Chapter 4, Part B

Database Systems, R. ki

\Relutional Calculus

% Comes in two flavours: Tuple relational calculus (TRC)
and Domain relational calculus (DRC).

+ Calculus has variables, constants, comparison ops, logical
connectives and quantifiers.
- TRC: Variables range over (i.e., get bound to) tuples.
- DRC: Variables range over domain elements (= field values).
- Both TRC and DRC are simple subsets of first-order logic.
+ Expressions in the calculus are called formulas. An
answer tuple is essentially an assignment of constants
to variables that make the formula evaluate to true.

Database Systems, R. 2

\Domuin Relational Calculus

+ Query has the form:
J‘<x1, x2,...,xn> | p{<xl,x2,...,xn>]‘

+ Answer includes all tuples <x1, x2,...,xn> that
make the formula p[<xl,x2,...,xn>} be true.

« Formula is recursively defined, starting with
simple atomic formulas (getting tuples from
relations or making comparisons of values),
and building bigger and better formulas using
the logical connectives.

Database Systems, R. ki

DRC Formulas

« Atomic formula:
- <x1,x2,...,xn>€ Rname , orXop Y, or X op constant
- op isoneof <>=<>#

% Formula:
- an atomic formula, or
- TP, pAG, pVq, where p and q are formulas, or
- 3AX(p(X)), where variable X is free in p(X), or
- VX(p(X)), where variable X is free in p(X)

+ The use of quantifiers 3 Xand V Xis said to bind X.
- A variable that is not bound is free.

Database Systems, R. 4

Free and Bound Variables

+ The use of quantifiers 31X and V X in a formula is
said to bind X.
- A variable that is not bound is free.

% Let us revisit the definition of a query:

le, X2,....xn)| p[<x1,x2,...,xn>ﬂ

+ There is an important restriction: the variables
x1, ..., xn that appear to the left of * | must be
the only free variables in the formula p(...).

Database Systems, R.

\Pind all sailors with a rating above 7
*<I,N,T,A>| <I,N,T,A>e Sailors A T>7}

+ The condition (I,N,T,A)e Sailors ensures that
the domain variables I, N, T and A are bound to
fields of the same Sailors tuple.

% The term (I,N, T,A? to the left of * |” (which should
be read as such that) says that every tuple <I, N, T,A>
that satisfies T>7 is in the answer.

+ Modify this query to answer:

- Find sailors who are older than 18 or have a rating under

9, and are called ‘Joe’.
Database Systems, R. Krish 6

ﬁind sailors rated > 7 who've reserved boat #103
{<I,N,T,A>| <I,N,T,A>e Sailors AT>T A
3 Ir,Br,D [<Ir,Br,D> e Reserves Alr=1 A Br=103H

+ Wehaveused 31Ir, Br,D (...) asashorthand
for 37r(3Br(3D(..)))

+ Note the use of 3 to find a tuple in Reserves that
“joins with’ the Sailors tuple under consideration.

Database Systems, R. ki 7

\Find sailors rated > 7 who’ve reserved a red boat

{<I,N,T,A>| <I,N,T,A>e Sailors AT>T A
3 Ir,Br,D [<Ir,Br,D> e Reserves A Ir=1 A
3B,BN,C [<B, BN.C)e Boats n B=Br n C:’red’ﬂ}

% Observe how the parentheses control the scope of
each quantifier’s binding.

% This may look cumbersome, but with a good user
interface, it is very intuitive. (Wait for QBE!)

Database Systems, R. 8

ﬁind sailors who’ve reserved all boats

{<I,N,T,A>| <I,N,T,A>e Sailors A
V B,BN,C { —.[<B,BN,C> € BoatsJ v
[3 Ir,Br,D [<Ir,Br,D> e ReservesaI=1Ir A BrzBml
+ Find all sailors I such that for each 3-tuple <B,BN C>

either it is not a tuple in Boats or there is a tuple in
Reserves showing that sailor I has reserved it.

Database Systems, R. ki 9

%d sailors who've reserved all boats (again!)

{<I,N,T,A>| <I,N,T,A>e Sailors A
\ <B,BN,C> € Boats
[EI <Ir,Br,D> e Reserves[I: Ira Br:BH}

Simpler notation, same query. (Much clearer)
+ To find sailors who've reserved all red boats:

AAAAA [C;ﬁ red’ v 3 <Ir,Br,D> € Reserves(I=1Ir A Br=Bm»

Database Systems, R. 10

Unsafe Queries, Expressive Power

« Itis possible to write syntactically correct calculus
queries that have an infinite number of answers!
Such queries are called unsafe.

- &8 {S| —u[Se Sailors]l

« Itis known that every query that can be expressed
in relational algebra can be expressed as a safe
query in DRC / TRC; the converse is also true.

+ Relational Completeness: Query language (e.g.,
SQL) can express every query that is expressible

in relational algebra/calculus.
Database Systems, R. i 1

\Summary

+ Relational calculus is non-operational, and
users define queries in terms of what they
want, not in terms of how to compute it.
(Declarativeness.)

+ Algebra and safe calculus have same
expressive power, leading to the notion of
relational completeness.

Database Systems, R. Krist 12

| sid | sname | rating | age | sid | bid | day
22 | Dustin | 7 450 22 | 101 | 10/10/98
29 | Brutus | 1 33.0 22 1 102 | 10/10/98
31 | Lubber | 8 33.5 22 | 103 | 10/8/98
32 | Andy 8 255 22 | 104 | 10/7/98
58 | Rusty 10 35.0 31 | 102 | 11/10/98
64 | Horatio | 7 350 31 | 103 | 11/6/98
7 | Zorba 10 16.0 31 | 104 | 11/12/98
74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 255 64 | 102 | 9/8/98
95 | Bob 3 63.5 74 | 103 | 9/8/98
Figure 5.1 An Instance 33 of Sailors Figure 5.2 An Instance R2 of Reserves

bid | bname 1 color
101 | Interlake | blue
102 | Interlake | red
103 | Clipper green
104 | Marine red

Figure 5.3 An Instance B/ of Boats

1. Find the' names and ages of all sailors.
SELECT DISTINCT S.sname, S.age FROM Sailors S

2. Find all sailors with a rating above 7.

SELECT S.sid, S.sname, S.rating, S.age FROM Sailors AS S WHERE
S.rating > 7

3. Find the names of sailors 'Who have reserved boat number 103.

SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid = R.sid AND
R.bid=103

(Or)

SELECT Sname FROM Sailors, Reserves WHERE Sailors.sid = Reserves.sid
AND bid=103

4.Find the sids of sa'iloTs who have TeseTved a Ted boat.

SELECT R.sid FROM Boats B, Reserves R WHERE B.bid = R.bid AND 8.color
= 'red'

5. Find the names of sailors Who have Reserved a Red boat.

SELECT S.sname FROM Sailors S, Reserves R, Boats B WHERE
S.sid = R.sid AND R.bid = B.bid AND B.color = 'red’

6. Find the colors of boats reserved by Lubber.

SELECT B.color FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND S.sname = 'Lubber’

7. Find the names of sailors who have reserved at least one boat.
SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid = R.sid
UNION, INTERSECT, AND EXCEPT

8. Find the names of sailors who have reserved a red or a green boat.

SELECT S.sname FROM Sailors S, Reserves R, Boats B WHERE
S.sid = R.sid AND R.bid = B.bid AND (B.color = 'red' OR B.color = 'green’)

(Or)

SELECT S.sname FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid
AND R.bid = B.bid AND B.color = 'red'

UNION

SELECT S2.sname FROM Sailors S2, Boats B2, Reserves R2 WHERE S2.sid =
R2.sid AND R2.bid = B2.bid AND B2.color = 'green’

9. Find the names of sailors who have reserved both a red and a green boat.

SELECT S.sname FROM Sailors S, Reserves R1, Boats B1, Reserves R2, Boats
B2 WHERE S.sid = Rl.sid AND R1.bid = Bl.bid AND S.sid = R2.sid AND
R2.bid =B2.bid AND B1.color="red' AND B2.color = 'green’

(or)
SELECT S.snarne FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid
AND R.bid = B.bid AND B.color = 'red'
INTERSECT
SELECT S2.sname FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = 'green'

(Q 19) Find the sids of all sailor's who have reserved red boats but not green
boats.

SELECT S.sid FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND
R.bid = B.bid AND B.color = 'red'

EXCEPT
SELECT S2.sid FROM Sailors S2, Reserves R2, Boats B2 WHERE
S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = 'green'

Nested Queries

A nested query is a query that has another query embedded within it; the embedded
query is called a suhquery. The embedded query can of course be a nested query
itself; thus queries that have very deeply nested structures are possible.

1. Find the names of sailors who have reserved boat 103.

SELECT S.sname FROM Sailors S WHERE S.sid IN (SELECT R.sid FROM
Reserves R WHERE R.bid = 103)

2. Find the names of sailors who have reserved a red boat.

SELECT S.sname FROM Sailors S WHERE S.sid IN
(SELECT R.sid FROM Reserves R WHERE R. bid IN
(SELECT B.bid FROM Boats B WHERE B.color = red"))

3. Find the names of sailors who have not reserved a red boat.
SELECT S.sname FROM Sailors S WHERE S.sid NOT IN
(SELECT R.sid FROM Reserves R WHERE R.bid IN
(SELECT B.bid FROM Boats B WHERE B.color = 'red'))

Correlated Nested Queries

In nested query subquery is executed only once but in correlated nested query sub
query is executed as many number of times as many rows are there in relation of
main query.

0.Find the names of sailors who have reserved boat number 103.

SELECT S.sname FROM Sailors S WHERE EXISTS (SELECT * FROM
Reserves R WHERE R.bid = 103
AND R.sid = S.sid)

The EXISTS operator is another set comparison operator, such as IN. It allows us to test whether
a set is nonempty, an implicit comparison with the empty set. Thus, for each Sailor row 5, we
test whether the set of Reserves rows R such that R.bid = 103 AND S.sid = R.sid is nonempty.

Set-Comparison Operators

set-comparison operators are EXISTS, IN, and UNIQUE, along with their negated versions.
SQL also supports op ANY and op ALL, where op is one of the arithmetic comparison operators
{<, <=, =, <>, >= >0

AGGREGATE OPERATORS

SQL supports five aggregate operations, which can be applied on any column, say A, of a
relation:

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

NULL VALUES

SQL provides a special column value called null to use in situations when the column value is
either unknown or inapplicable.

Eg:- Suppose the Sailor table definition was modified to include a rnaiden-name column.
However, only married women who take their husband's last name have a maiden name. For
women who do not take their husband's name and for men, the rmaiden_name colun are
inapplicable.

Comparisons Using Null Values

An issue in the presence of 'null values is the definition of when two rows in a relation instance
are regarded as duplicates. The SQL definition is that two rows are duplicates if corresponding
columns are either equal, or both contain null. Contradiction to this definition with the fact that if

we compare two null values using =, the result is unknown! In the context of duplicates, this
comparison is implicitly treated as true, which is an anomaly.

SQL provides a special comparison operator ISNULL to fint out null value for a column.
Disallowing Null Values

We can disallow null values by specifying NOT NULL as part of the field definition; for
example, sname CHAR(20) NOT NULL. In addition, the fields in a primary key are not allowed
to take on null values. Thus, there is an implicit NOT NULL constraint for every field listed in a
PRIMARY KEY constraint.

JOINS
Here are the different types of the JOINs in SQL.:

e (INNER) JOIN: Returns records that have matching values in both
tables

e LEFT (OUTER) JOIN: Return all records from the left table, and the
matched records from the right table

e RIGHT (OUTER) JOIN: Return all records from the right table, and the
matched records from the left table

e FULL (OUTER) JOIN: Return all records when there is a match in either
left or right table

INNER JOIN LEFT JOIN RIGHT JOIN

FULL OUTER JOIN

Employee table Department table
LastName | DepartmentlD | DepartmentlD | DepartmentName

Rafferty 31 31 Sales
Jones 33 33 Engineering
Heisenberg 33 34 Clerical
Robinson 34 35 Marketing
Smith 34

Williams @

Left outer join

The result of a left outer join (or simply left join) for tables A and B always contains all rows of the "left"
table (A), even if the join-condition does not find any matching row in the "right" table (B). This means
that if the oN clause matches 0 (zero) rows in B (for a given row in A), the join will still return a row in
the result (for that row)—but with NULL in each column from B. A left outer join returns all the values
from an inner join plus all values in the left table that do not match to the right table, including rows with
NULL (empty) values in the link column.

Employee.LastName Employee.DepartmentlD Department.DepartmentMame | Department.DepartmentiD

Jones 33 Engineering 33
Rafferty Ky Sales Y
Robinson 34 Clerical 34
Smith 34 Clerical 34
Williams NULL MULL NULL
Heisenberg 33 Engineering 33
Right outer join

A right outer join (or right join) closely resembles a left outer join, except with the treatment of the

tables reversed. Every row from the "right" table (B) will appear in the joined table at least once. If no
matching row from the "left" table (A) exists, NULL will appear in columns from A for those rows that
have no match in B.

A right outer join returns all the values from the right table and matched values from the left table

(NULL in the case of no matching join predicate). For example, this allows us to find each employee
and his or her department, but still show departments that have no employees.

Employee.LastName Employee.DepartmentlD | Department.DepartmentName Department.DepartmentiD

Smith 34 Clerical 34
Jones a3 Engineering 33
Robinson 34 Clerical 34
Heisenberg 33 Engineering 33
Rafferty Sy Sales Y
HULL NULL Marketing 35

Full outer join[edit]

Conceptually, a full outer join combines the effect of applying both left and right outer joins. Where
rows in the FULL OUTER JOINed tables do not match, the result set will have NULL values for every
column of the table that lacks a matching row. For those rows that do match, a single row will be
produced in the result set (containing columns populated from both tables).

For example, this allows us to see each employee who is in a department and each department that
has an employee, but also see each employee who is not part of a department and each department
which doesn't have an employee.

Employee.LastName Employee.DepartmentiD | Department.DepartmentName | Department.DepartmentiD

Smith 34 Clerical 34
Jones 33 Engineering 33
Robinson 34 Clerical 34
Williams NULL NULL NULL
Heisenberg 33 Engineering 33
Rafferty £ Sales Y

NULL NULL IMarketing 35

https://en.wikipedia.org/w/index.php?title=Join_(SQL)&action=edit§ion=10

UNIT -3

Normalisation or Schema Refinement or Database design

Normalisation or Schema Refinement is a technique of organizing the data in the
database. It is a systematic approach of decomposing tables to eliminate data redundancy
and undesirable characteristics like Insertion, Update and Deletion Anomalies.

The Schema Refinement refers to refine the schema by using some technique. The best
technique of schema refinement is decomposition.

The Basic Goal of Normalisation is used to eliminate redundancy.

Redundancy refers to repetition of same data or duplicate copies of same data stored in
different locations.

Normalization is used for mainly two purpose :
Eliminating redundant(useless) data.

Ensuring data dependencies make sense i.e data is logically stored.

Anomalies or Problems Facing without Normalisation :

Anomalies refers to the problems occurred after poorly planned and unnormalised databases
where all the data is stored in one table which is sometimes called a flat file database. Let us
consider such type of schema —

SID | Sname | CID | Cname | FEE
S1 A Cl C Sk
S2 A Cl C Sk
S1 A C2 C++ 10k
S3 B C2 C++ 10k
S3 B C3 JAVA 15k

Primary Key(SID,CID)

Here all the data is stored in a single table which causes redundancy of data or say anomalies as
SID and Sname are repeated once for same CID . Let us discuss anomalies one bye one.

Types of Anomalies : (Problems because of Redundancy)

There are three types of Anomalies produced in the database because of redundancy —

Updation/Modification Anomaly
Insertion Anomaly
Deletion Anomaly

Problem in updation / updation anomaly — If there is updation in the fee from 5000 to
7000, then we have to update FEE column in all the rows, else data will become
inconsistent.

S5ID | Sname | QD | Cname | FEE

51 | A 1 |c S| 7k Costly Operation
52 | A c|c S| 7k

51 | A Q2 | C 10k

531 | B 2 | C 10k More 10 Cost
53 | B C2 |JAavAa |15k

Insertion Anomaly and Deleteion Anomaly- These anamolies exist only due to
redundancy, otherwise they do not exist.

Insertion Anomaly :
New course is introduced C4, But no student is there who is having C4 subject.
SID Sname | D | Chame | FEE
51 A c1 |C Sk
52 A 1 |C Sk
51 A 2 |C 10k
53 B 2 |C 10k
53 B C2 | JAVA 15k
To Insert that
[NuL[NULL]] cafoB Jik <= Row. Tt is
Required to Put
Therefore, Dummy Data..
]
lxx [xx [| ca [oB | 12k |

Because of insertion of some data, It is forced to insert some other dummy data.

3.
e Deletion Anomaly :
Deletion of S3 student cause the deletion of course.

https://i0.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/updation-anamoly1.png
https://i2.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/Insertion-Anamoly1.png

Because of deletion of some data forced to delete some other useful

data.
SID Sname | CID | Cname | FEE
51 A 1 | C Sk
52 A 1 | C Sk
51 A 2 | C 10k
L] E [~ [LAY AL 1 EL-

Deleting student S3 will permanently delete the course B.

Solutions To Anomalies : Decomposition of Tables — Schema
Refinement

SID Sname | QD | Chname | FEE
51 A | C Sk
S2 A Q1 |C Sk
51 A Q2 |C 10k
53 B 2 | C 10k
53 B 2 | JAVA 15k
SID | Sname | CID CID | CNAME | FEE
51 | A C1 Cl C | 7k Updation Anamoly
2 |A Cl 2 C 10k Removed
S1 1A &2 c3 [Java |15k
= L2, 2 cA DB 12k Insertion .«"w.:uunul_:'
[l] =] 2
ka d — Removed
/ PK(SID,CID) PK(CID)

Deletion Anamoly

Remaoved

http://www.edugrabs.com/wp-content/uploads/2015/06/Deletion-Anamoly.png
http://www.edugrabs.com/wp-content/uploads/2015/06/Deletion-Anamoly.png
http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png
http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png
https://i2.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/Deletion-Anamoly.png
https://i2.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png

There are some Anomalies in this again —

SID| Sname |CI 7
51 | A" (AAM

52| K fa.-u-é

S1 | 2" (a8 {2

53 B 2

53 B 3

54 B 0

A student having no

course 15 enrolled. We

have to put dummy

data again.

What is the Solution ??
Solution :

R1

51D

Snaime

Updation Anamoly

Deletion Anamoly as
C2 course is alloted
to some students

R3

51D

CID

CID | CNAME | FEE
1 C Sk
3 JAVA 15k
ca DB 12k
CID Cname Fee

Functional dependency in DBMS

The attributes of a table is said to be dependent on each other when an attribute of a

table uniquely identifies another attribute of the same table.

For example: Suppose we have a student table with attributes: Stu_ld, Stu_Name,
Stu_Age. Here Stu_ld attribute uniquely identifies the Stu_Name attribute of student
table because if we know the student id we can tell the student name associated with
it. This is known as functional dependency and can be written as Stu_ld->Stu_Name or

in words we can say Stu_Name is functionally dependent on Stu_ld.

http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png
http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png
https://i0.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/Anamoly-again.png
https://i0.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/Anamolies-Solution-again.png

Formally:
If column A of a table uniquely identifies the column B of same table then it can
represented as A->B (Attribute B is functionally dependent on attribute A)

Types of Functional Dependencies
o Trivial functional dependency
« non-trivial functional dependency

e Multivalued dependency
o Transitive dependency

Trivial functional dependency

The dependency of an attribute on a set of attributes is known as trivial functional dependency if
the set of attributes includes that attribute.

Symbolically: A ->B is trivial functional dependency if B is a subset of A.
The following dependencies are also trivial: A->A & B->B
For example: Consider a table with two columns Student_id and Student_Name.

{Student_Id, Student_Name} -> Student_Id is a trivial functional dependency as Student_Id is a
subset of {Student_Id, Student_Name}. That makes sense because if we know the values of
Student_Id and Student_Name then the value of Student_Id can be uniquely determined.

Also, Student_Id -> Student_Id & Student_Name -> Student_Name are trivial dependencies too.

Non trivial functional dependency

If a functional dependency X->Y holds true where Y is not a subset of X then this dependency is
called non trivial Functional dependency.

For example:

An employee table with three attributes: emp_id, emp_name, emp_address.
The following functional dependencies are non-trivial:

emp_id -> emp_name (emp_name is not a subset of emp_id)

emp_id -> emp_address (emp_address is not a subset of emp_id)

http://beginnersbook.com/2015/04/trivial-functional-dependency-in-dbms/
http://beginnersbook.com/2015/04/non-trivial-functional-dependency-in-dbms/
http://beginnersbook.com/2015/04/multivalued-dependency-in-dbms/
http://beginnersbook.com/2015/04/transitive-dependency-in-dbms/

On the other hand, the following dependencies are trivial:
{emp_id, emp_name} -> emp_name [emp_name is a subset of {emp_id, emp_name}]
Refer: trivial functional dependency.

Completely non trivial FD:
If a FD X->Y holds true where X intersection Y is null then this dependency is said to be
completely non trivial function dependency.

Multivalued dependency

Multivalued dependency occurs when there are more than one independent multivalued
attributes in a table.

For example: Consider a bike manufacture company, which produces two colors (Black and
white) in each model every year.

bike _model manuf_year color
M1001 2007 Black
M1001 2007 Red
M2012 2008 Black
M2012 2008 Red

http://beginnersbook.com/2015/04/trivial-functional-dependency-in-dbms/

M2222 2009 Black

M2222 2009 Red

Here columns manuf_year and color are independent of each other and dependent on
bike_model. In this case these two columns are said to be multivalued dependent on bike_model.
These dependencies can be represented like this:

bike_model ->> manuf_year

bike_model ->> color

Transitive dependency

A functional dependency is said to be transitive if it is indirectly formed by two functional
dependencies. For e.g.

X -> Z is a transitive dependency if the following three functional dependencies hold true:

o X->Y
e Y doesnot ->X
o YO/

Note: A transitive dependency can only occur in a relation of three of more attributes. This
dependency helps us normalizing the database in 3NF (3<“Normal Form).

Inference Rules

Armstrong’s axioms are a set of axioms (or, more precisely, inference rules) used to
infer all the functional dependencies on a relational database. They were developed by
William W. Armstrong.

Let R(U) be a relation scheme over the set of attributes U. We will use the letters X, Y, Z
to represent any subset of and, for short, the union of two sets of attributes and by
instead of theusual X U Y.

o The Armstrong's axioms are very intuitive
o Consider the relation:

Employee-Department

SSN fname lname DNO DName
Fomm - e et o o o +
| 111-11-1111 | John | Smith | 5 | Research |
- - e o - +
| 222-22-2222 | Jane | Doe | 4 | Payroll |
- - e o - +
| 333-33-3333 | Pete | Pan | 5 | Research |
- - - e o - +

o Examples of Armostrong axioms:

1. Reflexivity rule: if Y € Xthen X — Y

{fname, lname} —> {fname}

What it says is: if I see that same values for
{fname, lname}

I must also see that same value for {fname} -
kinda obvious :-)

2. Augmentation rule: if X — Y then XZ — YZ

If {SSN} — {fname} then: {SSN, DName} —

{fname, DName}

3. Transitivity rule: if X - Yand Y > Z then X —» Z

If:

{SSN} — {DNO}

{DNO} —> {DName}

Then also:

{SSN} — {DName}

The Decomposition rule:

o ifX—>YZthenn X—Y and X —>Z I

Union rule:

o fX—>YandX —>Zthenn X—>YZ I

Psuedo transitivity rule:

o ifX—Yand YW — Zthenn XW—>Z I

Sample Relation:

A B C D E
a b z W q
=] b r W p
a d z W t
=] d r W q
a f z 5 t
e f r s t
‘ T fd1
| E
T fd3
[T fad
’ T fd5
A — CHdD
C — A (fd2) T
B —> D (d3) =
AB—E (fdd)
BE.C—E (fd5)
I fds
[‘ T fd7
C.D—A (fd6) Not true

AB.C— E{fN

How to Find Candidate Key using
Functional Dependencies —

In the previous post (How to Find Super Key from Functional Dependencies), we identify
all the superkeys wusing functional dependencies. To identify Candidate Key,
Let R be the relational schema, and X be the set of attributes over R. X+ determine all the
attributes of R, and therefore X is said to be superkey of R. If there are no superflous attributes in
the Super key, then it will be Candidate Key.
In short, a minimal Super Key is a Candidate Key.

Example/Question 1 : Let R(ABCDE) is a relational schema with following
functional dependencies. AB - C DE - B CD - E
Step 1: Identify the SuperKeys -

ACD, ABD, ADE, ABDE, ACDB, ACDE, ACDBE. {From Previous Post Eg.}

Step 2: Find minimal super key -

Neglecting the last four keys as they can be trimmed down, so, checking

the first three keys (ACD, ABD and ADE)

For SuperKey : ACD

(A)+ = {A} - {Not determine all attributes of R}
(C)+ = {C} - {Not determine all attributes of R}
(D)+ = {D} - {Not determine all attributes of R}

For SuperKey : ABD

(A)+ = {A} - {Not determine all attributes of R}
(B): = {B} - {Not determine all attributes of R}
(D)+ = {D} - {Not determine all attributes of R}

http://www.edugrabs.com/how-to-find-super-key-from-functional-dependencies/
http://www.edugrabs.com/how-to-find-super-key-from-functional-dependencies/

For SuperKey : ADE

(A)+ = {A} - {Not determine all attributes of R}
(D)+ = {D} - {Not determine all attributes of R}
(E)+ = {E} - {Not determine all attributes of R}

Hence none of proper sets of SuperKeys is not able to determine all attributes of
R, So ACD, ABD, ADE all are minimal superkeys or candidate keys.

Example/Question 2 : Let R(ABCDE) is a relational schema with following
functional dependencies - AB - CC - D B - EA Find Out the Candidate Key ?
Step 1: Identify the super key

(AB+) : {ABCDE} = Superkey

(c) : {cp} = Not a Superkey

(B+) : {BEACD} = Superkey

So, Super Keys will be B, AB, BC, BD, BE, BAC, BAD, BAE, BCD, BCE, BDE,

BACD, BACE, BCDE, ABDE, ABCDE

Step 2: Find minimal super key -

Taking the first one key, as all other keys can be trimmed down -

(B-) : {EABCD} {determine all the attributes of R}

Since B is a minimal SuperKey = B is a Candidate Key.

So, the Candidate Key of R is - B.

Functional Dependency Set Closure
(F+)

Functional Dependency Set Closure of F is the set of all functional dependencies that are
determined by it.

Example of Functional Dependency Set Closure

Consider a relation R(ABC) having following functional dependencies :
F={A—-B,B—>C}

To find the Functional Dependency Set closure of F~ :

(0)- = {0}
=>0->0
= 1 FD
(A)- = {ABC}
> A->0, A-> A, A > B, A - C,
A-»>BC, A->AB, A-~>AC, A - ABC
= 8 FDs = (2)3
. where 3 is number of attributes in closure
(B): = {BC}
= B-»>0,B->B, B>C, B~ BC
= 4 FDs = (2)2
(© =A{c}

Y

c->0,C->C
= 2 FDs = (2)t

(AB): = {ABC}

= AB-> 0, AB-> A, AB->B, AB -~ C,

AB > AB, AB » BC, AB » AC, AB -» ABC
= 8 FDs = (2)3

(BC)*

{BC}

= BC-> 0, BC > B, BC > C, BC > BC
4 FDs = (2):

Y

(AC)+ {ABC}
= AC-~-»> 0, AC> A, AC~» C, AC > C,

AC » AC, AC » AB, AC » BC, AC - ABC
= 8 FDs = (2)3

(ABC)+ = {ABC}
= ABC > 0, ABC > A, ABC > B, ABC - C,
ABC > BC, ABC -» AB, ABC -» AC, ABC - ABC

= 8 FDs = (2):

So, the Functional Dependency Set Closure of (F)+ will be :

Fr = {
-0, A>0, A>A, A>B, A>C, A>BC, A~> AB, A > AC, A » ABC,
B-o¢,B-B,B~>C,B~>B,C~>0, C~>C, AB~> 0, AB-> A, AB > B,
AB - C, AB » AB, AB » BC, AB > AC, AB » ABC, BC » 0, BC » B,
BC - C, BC - BC, AC > 0, AC > A, AC - C, AC » C, AC » AC, AC - AB,
AC » BC, AC » ABC, ABC - ®, ABC - A, ABC » B, ABC » C, ABC -~ BC,
ABC » AB, ABC - AC, ABC - ABC

}

The Total FDs will be :

1+8+4+2+8+4+ 8+ 8 =43 FDs

Consider another relation R(AB) having following functional dependencies :
F={A—-B,B—->A}

To find the Functional Dependency Set closure of F~ :

(0)- = {0} =1

(A)- = {AB} =4 = (2)
(B) = {MB} = 4= (2)
(AB)* = {AB} = 4 = (2)

Total = 13

R o £D

@ portiol_fo:-

JJ m’(fj oﬂquoueé
lqa i leads o
Pxob.
8! R(Aeco)

<oy .+ A
F=fap—>c, B=ABE lea A

\/E;)j

@ Toositive dep -
JA i AT F by
4 is o ol REae

0. 0% BT nn -~

otibutes Ton
£9: R(ABCDE)
p—>p, C—ES |<a8 " AD

V//j (T D)

x o S

F=] Ag—¢2,

\
Y

‘E_U’_’ —Func féﬁ :

JA FDX’»yLSO\juHFD’%X GJGJZ]
atibide ', mex,molﬂ:dm’*m’(i Lwlor‘awa

moxe.
(0¥

33 ok n&ﬂ—’uj allis bulez e on ’?LO‘J“O‘UE] Ol(ff)mouﬂj 4
oy - attibde Moo 1 ks qull gune hp

'—%I’ R(AGCD)
i AR —C
0 —o>D

|<6J‘. ASS

AL —>C 1S Ju\? 8unc oLjD

L0 s PO{

First normal form

First normal form (1NF) is a property of a relation in a relational database. A relation is in first normal
form if and only if the domain of each attribute contains only atomic (indivisible) values, and the value
of each attribute contains only a single value from that domain.

Designs that Violate 1NF-Below is a table that stores the names and telephone numbers of
customers. One requirement though is to retain multiple telephone numbers for some customers.
The simplest way of satisfying this requirement is to allow the "Telephone Number" column in any
given row to contain more than one value:

Customer
Customer First
Surname Telephone Number
ID Name
123 Pooja Singh 555-861-2025, 192-122-1111
(555) 403-1659 Ext. 53; 182-929-
456 San Zhang
2929
789 John Doe 555-808-9633

Designs that Comply with 1NF-To bring the model into the first normal form, we split the
strings we used to hold our telephone number information into "atomic” (i.e. indivisible)
entities: single phone numbers. And we ensure no row contains more than one phone
number.

Customer

Customer ID First Name Surname Telephone Number

123 Pooja Singh 555-861-2025
123 Pooja Singh 192-122-1111
456 San Zhang 182-929-2929
456 San Zhang (555) 403-1659 Ext. 53

789 John Doe 555-808-9633

https://en.wikipedia.org/wiki/Relation_(database)
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Data_domain
https://en.wikipedia.org/wiki/Column_(database)
https://en.wikipedia.org/wiki/First_normal_form#Atomicity

Second normal form

Arelation is in 2NF if it is in 1INF and no non-prime attribute is dependent on any proper subset of any
candidate key of the relation. A non-prime attribute of a relation is an attribute that is not a part of any
candidate key of the relation.

https://en.wikipedia.org/wiki/Non-prime_attribute
https://en.wikipedia.org/wiki/Functional_dependency
https://en.wikipedia.org/wiki/Proper_subset
https://en.wikipedia.org/wiki/Candidate_key

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

bl L/

.

=\ AR': ?A;B,C§ p AC*: iA,E,cS ABc:gﬁr’/
oo - .

Bttty o am, ke, ARe ; CagiAB AS)

E * .

E = LN

' » —_—

: W«:ﬁ (wo - J>

,, - R > C c — B

: X A p 3 X $3N¢

iZQ?}\G (LB, o(x&ugefc\up

-

AR —C cC— B

g < |

- = N°+ A QCNC

P ¢, B) - OscaEl
'Q\U\/C> QZC\\/’_

- ‘], PL

Scanned by CamScanner

™
:= BEX: R(A B S DD
§ o -5
:.“A——> gep Be— AP |
G =f\ e
V.\:E—i“‘ A&r: ?v A,B/C{D) s © % & X
- . > . 4 ok gD Bz
= < fc g p 2 r
e A% Cag ol medts R >4
:: Ro™. EB,D% , Ao ?A,ch’bg
N Re*:- $R,C oD oo pc
] °SV?Q’“‘U¢3ﬂ v ABLD, ABC, AR , / /
:: Ac, PACD,
=
- | — B [anf
e A —> BD RC — AD D'*x
7 X X X X X
s \/jA
- %l\\‘:P CV\O 1x Jy ~+ WO v 5
: . | “eh
: <D rc = AD o~ B S
P A 5B potes
b % % %*
| . Roper ke
pene (£ P, % ® ‘@ =
' | S D o= B '
et e X RONF
v v .
Scanned by CamScanner

—

Scanned by CamScanner

e

%LQQ’ ”’]
A—C D F~> EGJ N

Y=

e rDC-WV"\EQ.\r Mﬁ%

o

L;'Q 'P[A,QC!D:S‘ pzb\{ “)
iA—-}B ABLd » & € - O6H

. e

S\’U(—’?‘
80!) b\s@d@« el T~ e ?(Qelve &vv INf,
‘Mm‘f A(;[Nalr e —3 o \(.——s'ﬁ

S A 2l

A%C'&‘Z g Aq B, Q}i

pcb et n e D6

X 3w
P@\ M P Dewwﬁo;l%v

fo e d Wl C)ovM/Cale'b& over
o) LUy =3 g (siapty Abke) ;
(LY Pervocy predowdod [4“*(:
¢ Rraox ﬁw 0%

§ AR AMp 3 E EF AGH

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

‘J Oves 2. “ite ol“"’"fo‘“
2
. st 21 » o i losslew OF e'ﬁ
.

Riar: —> R (ey)

B NIt — > R

3% an FD XY hol

Xny js e"fs v d.m.swyms)d')‘an of §

& %Yy s (oseless.

II '».I,.

3-6'/ X appectr N el R-Y

Scanned by CamScanner

?\(V_A,@D
gL (8,0d By (e D

&(Ar B, ¢, o)

AR
B >C
>0 & & o)
J Yy WM
A- B
: SO Oveal
Ry \ O G | ay |
: * Fog \‘)/\{3\"""7‘5 O, o)
N Ea | bsy \ bs;,\okslqiL -i,)
- - |
| L&t $MJ Hus Mﬁ, ?
’ ‘CD Whem Wy m&'%‘w“sm de Xt Yelle con
’ B

d bt dawe 0"*& WDNT .

15) WOWe OM& oM Touw X Jelle amt
® ol 73\‘6

‘-INQi&_ K LDSS \%AQQ«« wa\\\ M&E@ w Nt
, R : LQLABD

Unss oy

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Lc’/ R be o A\clﬂ“ﬁ:\ Schemo 2) 1 X B Y be

\ﬁ"l?‘(‘{\ 0/‘ L]((a\"'- N R,

;' MVD X ——>Y 15 Sad 10 hold ©ver f/.‘_\¥
in cwsu! (UmL insdance » oF R, edoch ¥ voisab
OMo ;}L;, a. Set of v Volves 3t Hus sel S5 Sr ’CJ’J’J"’“
OF +_ voles in ottue atlsss.

Fosmolly ¥ MVD X—>—2y helds 6w

R s g _ R=xy , 4& %ngrj vust ke dyve o

QNﬁij Ltapi o > of 12

Lk

¥

A i\@b’/ 1o ey Y 4.y = 't?,x/(ﬁ?uq Y&

‘“

=
’f‘;ﬂ

L " be Sewe A36v such dwof Aoy = THXY 8
(™ (i’Z' + = 7&3} %

-

< | x|

-]d\ bl | Cp =g

: a | L] ¢ |— t2

) & b» | €l |— 4

il
Scanned by CamScanner

e

Scanned by CamScanner

Scanned by CamScanner

Transaction Processing
Recovery & Concurrency Control

-

% What is a transaction
- Atransaction is the basic logical unit of execution in an
X information system. A transaction is a sequence of operations
%ﬁ\that must be executed as a whole, taking a consistent (&
- correct) database state into another consistent (& correct)

. itabase state;

. A-lcollection of actions that make consistent transformations of
system states while preserving system consistency

#* An indivisible unit of processing

database in a database in a
consistent state consistent state
Account A Fred Bloggs £1000 Transfer £500 [account A Fred Bloggs £500
l\ Account B Sue Smith £0 Account B Sue Smith £500
i
begin Transaction execution of Transaction end Transaction

database may be
temporarily in an
inconsistent state
during execution

% Desirable Properties of ACID Transactions
A Atomicity: a transaction is an atomic unit of processing and
2} "it is either performed entirely or not at all

{C Consistency Preservation: a transaction's correct execution
.must take the database from one correct state to another
‘Isolation/Independence: the updates of a transaction must

© not be made visible to other transactions until it is committed

-.za(solves the temporary update problem)

D Durability (or Permanency): if a transaction changes the
database and is committed, the changes must never be lost
because of subsequent failure

o Serialisability: transactions are considered serialisable if the
effect of running them in an interleaved fashion is equivalent

» torunning them serially in some order

% Requirements for Database Consistency

Concurrency Control

* Most DBMS are multi-user systems.

The concurrent execution of many different transactions
submitted by various users must be organised such that
each transaction does not interfere with another transaction
with one another in a way that produces incorrect results.

* The concurrent execution of transactions must be such that

each transaction appears to execute in isolation.
#* Recovery

System failures, either hardware or software, must not result

in an inconsistent database

-

¥ Transaction as a Recovery Unit

» 'fl_f an error or hardware/software crash occurs between the begin and

i ,end, the database will be inconsistent

» Computer Failure (system crash)

» A transaction or system error

= Local errors or exception conditions detected by the transaction

. Concurrency control enforcement

Disk failure

* » Physical problems and catastrophes

#» The database is restored to some state from the past so that a correct
state—close to the time of failure—can be reconstructed from the past
state.

» A DBMS ensures that if a transaction executes some updates and then a
failure occurs before the transaction reaches normal termination, then
those updates are undone.

» The statements COMMIT and ROLLBACK (or their equivalent) ensure
Transaction Atomicity

-

i

% Recovery

'# Mirroring
%; # keep two copies of the database and maintain them simultaneously

y 4 ==
ﬁ %ckup

' "= periodically dump the complete state of the database to some form of

 tertiary storage @ C

System Logging
» the log keeps track of all transaction operations affecting the values of
database items. The log is kept on disk so that it is not affected by
A failures except for disk and catastrophic failures.
i

M——-—

" Recovery from Transaction Failures

Catastrophic failure
#» Restore a previous copy of the database from archival backup

Apply transaction log to copy to reconstruct more current state
by redoing committed transaction operations up to failure point

#* Incremental dump + log each transaction

: + Non-catastrophic failure

» Reverse the changes that caused the inconsistency by undoing
the operations and possibly redoing legitimate changes which
were lost

» The entries kept in the system log are consulted during
recovery.

-

» No need to use the complete archival copy of the database.

" Transaction States

#

. For recovery purposes the system needs to keep track of when a
transaction starts, terminates and commits.

'# Begin_Transaction: marks the beginning of a transaction execution;
End_Transaction: specifies that the read and write operations have ended and
< marks the end limit of transaction execution (but may be aborted because of
:@ oncurrency control);
{f’t,%bmmit_Transaction: signals a successful end of the transaction. Any updates
executed by the transaction can be safely committed to the database and will not
‘be undone;

Rollback (or Abort): signals that the transaction has ended unsuccessfully. Any
changes that the transaction may have applied to the database must be undone;

Undo: similar to ROLLBACK but it applies to a single operation rather than to a
whole transaction;

» Redo: specifies that certain transaction operations must be redone to ensure
that all the operations of a committed transaction have been applied successfully
& tothe database;

% Entries in the System Log

m

W
‘For every transaction a unique transaction-id is genera’? Credit_labmark (sno

g bxthe system. NUMBER, cno CHAR, credit
3 . L. NUMBER)
'& [start_transaction, transaction-id]: the start of old mark NUMBER;

% xecution of the transaction identified by transaction-id | new mark NUMBER;
@ read_item, transaction-id, X]: the transaction identified| seLEcT labmark INTO
[Dby transaction-id reads the value of database item X.__j od_maxk FROM enrol
5 -, . WHERE studno = sno and

« Optional in some protocols. courseno ~ cno FOR UPDATE
» [write_item, transaction-id, X, old_value, new_value]: | OF labmark;

the transaction identified by transaction-id changes the

. new_ mark := old_ mark +
value of database item X from old_value to new_valu credit;

#* [commit, transaction-id]: the transaction identified by g UPDATE enrol SET labmark
transaction-id has completed all accesses to the = new_mark WHERE studno =
. sno and courseno = Cno H
database successfully and its effect can be recordem

\ permanently (committed) COMMIT;

Y

* [abort, transaction-id]: the transaction identified by EXCEPTION
1 i - WHEN OTHERS THEN
transaction-id has been aborted —_— ROLLBACK,

END credit_labmark;

Trg'nsaction execution

L

A transaction reaches its commit point when all
operations accessing the database are completed
and the result has been recorded in the log. It then
writes a [commit, transaction-id].

END
TRANSACTIO TRANSACTION

partially
committed
/

If a system failure occurs, searching the log and rollback the transactions that
have written into the log a

[start_transaction, transaction-id]

[write_item, transaction-id, X, old_value, new_value]
but have not recorded into the log a [commit, transaction-id]

READ: WRITE

-

% Read and Write Operations of a Transaction
~ * Specify read or write operations on the database items that are executed
. aas part of a transaction
' * read_item(X):
#» reads a database item named X into a program variable also named X.
1. find the address of the disk block that contains item X
ﬁ . 2. copy that disk block into a buffer in the main memory
" 3. copy item X from the buffer to the program variable named
* write_item(X):
» writes the value of program variable X into the database item named X.
1. find the address of the disk block that contains item X

2. copy that disk block into a buffer in the main memory

3. copy item X from the program variable named X into its current location
in the buffer store the updated block in the buffer back to disk (this step
updates the database on disk)

-

¥ Checkpoints in the System Log

» A#[checkpoint] record is written periodically into the

* log when the system writes out to the database on

%'i d‘gk the effect of all WRITE operations of committed -
%' ransactions.

»_ All transactions whose [commit, transaction-id]
entries can be found in the system Iog will not require

* their WRITE operations to be redone in the case of a -
' system crash.

Before a transaction reaches commit point, force-
write or flush the log file to disk before commit
transaction.

Actions Constituting a Checkpoint

» temporary suspension of transaction execution

forced writing of all updated database blocks in main
i\ memory buffers to disk
i

» 'writing a [checkpoint] record to the log and force writing
the log to disk

resuming of transaction execution

T Write Ahead Logging

“In Elace” updating protocols: Overwriting data in situ

4! Deferred Update: Immediate Update:
& # no actual update of the » the database may be updated
database until after a by some operations of a
transaction reaches its transaction before it reaches its
~ §° commit point commit point.
" 1. Updates recorded in log 1. Update X recorded in log
2. Transaction commit point 2. Update X in database '
_ Force log to the disk 3. Update Y recorded in log EQ'B%?(E
4. Update the database 4. Transaction commitpoint
3. Force log to the disk FAILURE!
FAILURE! :
LLREDO database from log 4. Update Y'in databBe—] REDO Y
\,_3 entries
No UNDO necessary because + Undo in reverse order in log
database never altered * Redo in committed log order

+ uses the write_item log entry

T Transaction as a Concurrency Unit

#* Transactions must be synchronised correctly to
guarantee database consistency

2]
3
i T1 =
Account B Sue Smith £0 | _| Account A Fred Bloggs £500 5
Trapsfer £500 Account B Sue Smith £500 =}
)
£ 4 mA toB o
| Account A Fred Bloggs £1000 S
L
>
- T2 Account A Fred Bloggs £800 @)
| Account C Jill Jones £700 | < - c
Transfer £300 Account C Jill Jones £400 —
o
fromCto A S
Net result
A Account A 800

Account B 500
Account C 400

" Transaction scheduling algorithms

Transaction Serialisability

3 * » The effect on a database of any number of transactions
¥ , executing in parallel must be the same as if they were
executed one after another

Problems due to the Concurrent Execution of
Transactions
* The Lost Update Problem
» The Incorrect Summary or Unrepeatable Read Problem
» The Temporary Update (Dirty Read) Problem

-

" The Lost Update Problem

3 interleaved in a way that makes the database item incorrect
T1: (joe) T2: (fred) X Y
- read_item(X); 4
e X:=X-N; 2
§ read_item(X); 4
5 X=X+ M; 7
" write_item(X); 2
read_item(Y); 8
write_item(X); 7
Y=Y +N; 10
write_item(Y); 10

updated database value resulting from T1 is lost

'+ Two transactions accessing the same database item have their operations

X=4
Y=8
N=2
M=3

i_ﬁ item X has incorrect value because its update from T1 is “lost” (overwritten)
T2 reads the value of X before T1 changes it in the database and hence the

arecords.

"

T2 reads X
after N is
subtracted and
reads Y before
N is added, so
a wrong
summary is the
i result
e

Thq,lncorrect Summary or Unrepeatable Read Problem

* .One transaction is calculating an aggregate summary function on a
number of records while other transactions are updating some of these

¥ # The aggregate function may calculate some values before they are
updated and others after.

T1: T2: T1 |T2 |Sum
sum:= 0; 0
read_item(A); 4
sum:=sum + A; 4

read_item(X);. 4

X:=X-N; 2

write_item(X); 2
read_item(X); 2
sum:= sum + X; 6
read_item(Y); 8
sum:=sum +Y; 14

read_item(Y); 8

Y=Y +N; 10

write_item(Y); 10

% Dirty Read or The Temporary Update Problem

i One transaction updates a database item and then the transaction fails.
1 a'he updated item is accessed by another transaction before it is changed
back to its original value

Joe
cancels

\

T1: (joe) T2: (fred) Database |Log |Log
old |new
read_item(X); 4
X:=X-N; 2
write_item(X); 2 4 2
read_item(X); 2
X:=X-N; -1
write_item(X); -112 -1
failed write (X) 4 rollback T1
log

Fred books seat on flight X
because Joe was on Flight X

‘% _transaction T1 fails and must change the value of X back to its old value
meanwhile T2 has read the “temporary” incorrect value of X

% Schedules of Transactions

#

. .A schedule S of n transactions is a sequential

W . . . T
#! ‘ordering of the operations of the n transactions.
{ # The transactions are interleaved read x
write x

A schedule maintains the order of operations within
ithe individual transaction. T2

o

" » For each transaction T if operation a is performed in T

~ before operation b, then operation a will be performed reé_ad x
before operation b in S. write X
* The operations are in the same order as they were before
the transactions were interleaved S
Two operations conflict if they belong to different read x
\ transactions, AND access the same data item AND ;\?r?ti’;
© one of them is a write. write x

¥ Serial and Non-serial Schedules

A schedule S is serial if, for every transaction T
participating in the schedule, all of T's operations are
executed consecutively in the schedule; otherwise it
is called non-serial.

Non-serial schedules mean that transactions are

; interleaved. There are many possible orders or

& schedules.

#» Serialisability theory attempts to determine the
'correctness' of the schedules.

A schedule S of n transactions is serialisable if it is
equivalent to some serial schedule of the same n
transactions.

S

¥ Example of Serial Schedules

4 write_item(X);
read_item(Y);
1Y:=Y + N;

write_item(Y);
read_item(X);
X=X+ M;

write_item(X);

read_item(X);
X:=X-N;
write_item(X);
read_item(Y);
Y:=Y + N;
write_item(Y);

: #* Schedule A «Schedule B

4T T2: T T2
read_item(X); read_item(X);
X:=X-N; X=X+ M;

write_item(X);

-

§#

% Example of Non-serial Schedules

read_item(X);
X=X+ M;
write_item(X);
read_item(Y);
write_item(X);
Y:=Y + N;
write_item(Y);

write_item(X);

read_item(Y);
Y:=Y +N;
write_item(Y);

.~ = Schedule C .Schedule D
i
(R T2: T T2:
|| read_item(X); read_item(X);
-@ X:=X-N; X:=X-N;

read_item(X);
X=X+ M;
write_item(X);

-

We have to figure out whether a schedule is equivalent
to a serial schedule
i.e. the reads and writes are in the right order

11

%

Precedence graphs (assuming read X before write X)

write_it);
read_item(Y'\
Y:=Y +N;

write_item(Y);

read_item(X);

read_item(X);
X:=X-N;

write_item(X);
read_item(Y);

[T T2: T1: T2:
read_item(X); read_item(X);
X=X -N; X=X+ M;

write_item(X);

-

write_item(X);
r&ad_item(Y);

=XEN;
write_ite

read_item(X);
X=X+ M;

write_item(X);

A

write_item(X);

read_item(Y);
Y:=Y + N;
write_item(Y);

il Xi= X + M; Y=Y + N;
& | write_item(X); write_item(Y);
T1: T2: T1: T2:
read_item(X); read_item(X);
=X N; X:=X-N; -

read_item(X);
X=X+ M;
write_item(X);

#

* View Eq

uivalence:

T View Equivalence and View Serialisability

As long as each read operation of a transaction reads the
result of the same write operation in both schedules, the
write operations of each transaction must produce the same
results.

» The read operations are said to see the same view in both
schedules

8 # The final write operation on each data item is the same in
both schedules, so the database state should be the same at
the end of both schedules

A schedule S is view serialisable if it is view
equivalent to a serial schedule.

Testing for view serialisability is NP-complete

-

% Semantic Serialisability

~ % Some applications can produce schedules that are
¥ correct but aren’t conflict or view serialisable.

T1

e.g. Debit/Credit transactions (Addition and
subtraction are commutative)

T2
" |read_item(X); read_item(Y); Schedule
X:=X-10; Y:=Y-20; T1 T2
write_item(X); write_item(Y); read_item(X);
read_item(Y); read_item(Z); X:=X-10:
Y:=Y+10; Z:+Z+20; write_item(X);
write_item(Y); write_item(2); read_item(Y);

Y:=Y-20;
write_item(Y);

-

read_item(Y);
Y:=Y+10;
write_item(Y);

% Methods for Serialisability

_t:fMulti-version Concurrency Control techniques keep the old
%-.; walues of a data item when that item is updated.

%& Timestamps are unique identifiers for each transaction and
are generated by the system. Transactions can then be

'@ 5g_‘_)_rdered according to their timestamps to ensure

' serialisability.

* Protocols that, if followed by every transaction, will ensure
serialisability of all schedules in which the transactions
participate. They may use locking techniques of data items
to prevent multiple transactions from accessing items
concurrently.

";ﬁ Pessimistic Concurrency Control

» Check before a database operation is executed by locking data items
before they are read and written or checking timestamps

-

Locking Techniques for Concurrency Control

The concept of locking data items is one of the main
techniques used for controlling the concurrent
execution of transactions.

A lock is a variable associated with a data item in the
database. Generally there is a lock for each data item
in the database.

A lock describes the status of the data item with
respect to possible operations that can be applied to
that item. It is used for synchronising the access by
concurrent transactions to the database items.

A transaction locks an object before using it

When an object is locked by another transaction, the
requesting transaction must wait

-

Types of Locks

#* Binary locks have two possible states:
1. locked (lock_item(X) operation) and
2. unlocked (unlock_item(X) operation

Multiple-mode locks allow concurrent access to the
same item by several transactions. Three possible
states:

1. read locked or shared locked (other transactions are allowed
to read the item)

2. write locked or exclusive locked (a single transaction
exclusively holds the lock on the item) and

3. unlocked.
Locks are held in a lock table.
» upgrade lock: read lock to write lock
» downgrade lock: write lock to read lock

14

&

Loeks don't guarantee serialisability: Lost Update

4

write_lock(X)
write_item(X);
unlock(X)
write_lock(Y)
read_item(Y);

Y=Y +N;
write_item(Y);

-

unlock(Y)

write_lock(X)
read_item(X); |4
X=X+ M; 7

unlock(X)

write_lock(X)
write_item(X); |7

unlock(X)

o T1: (joe) T2: (fred) X Y
%'-i *’ write_lock(X)

" read_item(X); 4

% X=X - N; 2
‘é unlock(X)

10
10

X=20, Y=30

T1

T2

% Locks don’t guarantee serialisability

read_lock(Y);
read_item(Y);
¥ unlock(Y);
o write_lock(X);
read_item(X);
X:=X+Y;
write_item(X);
unlock(X);

Y is unlocked too early

read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y:=X+Y;
write_item(Y);
unlock(Y);

X is unlocked too early

i?* ~# Schedule 1: T1 followed by T2 = X=50, Y=80
- # Schedule 2: T2 followed by T1 = X=70, Y=50

15

' Non-serialisable schedule S that uses locks

SixE20 | =
a P read_lock(Y);
%‘Yb—:ao read_item(Y);

unlock(Y);

read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
B read_item(Y);
Y:=X+Y;
write_item(Y);
unlock(Y);

write_lock(X);
read_item(X);
X:=X+Y;
write_item(X);
unlock(X);

-

result of S = X=50, Y=50

% Ensuring Serialisability: Two-Phase Locking

. AII locking operations (read_lock, write_lock) precede the
%; first unlock operation in the transactions.
» Two phases:

» expanding phase: new locks on items can be acquired but none
can be released

shrinking phase: existing locks can be released but no new ones
can be acquired

X=20, Y=30

T1

T2

read_lock(Y);
read_item(Y);
write_lock(X);

read_lock(X);
read_item(X);
write_lock(Y);

unlock(Y); unlock(X);
L § read_item(X); read_item(Y);
.Y X:=X+Y; Y:=X+Y;
write_item(X); write_item(Y);
unlock(X); unlock(Y);

16

% Two-Phasing Locking

~ = Basic 2PL
%; * When a transaction releases a lock, it may not request another lock

lock point ' _
: obtain lock
: number T ‘L |
P W of locks _l release lock
& 1
5 Phase 1 | Phase 2
BEGIN ' END

#, Conservative 2PL or static 2PL

5 = atransaction locks all the items it accesses before the transaction
begins execution

» pre-declaring read and write sets

% Two-Phasing Locking
" » Strict 2PL a transaction does not release any of its

locks until after it commits or aborts
|eads to a strict schedule for recovery

f

A obtain lock

number L release lock

B of Jocks
; v »Transaction

BEGIN period of data gNp duration
item use

-

17

-

% Locking Problems: Deadlock

#* Each of two or more transactions is waiting for the other to
release an item. Also called a deadly embrace

= T1 T2
" read_lock(Y);
read_item(Y);

read_lock(X);
read_item(X);
write_lock(X);

write_lock(Y);

&

i

%

¥ Deadlocks and Livelocks

* Deadlock prevention protocol:
& + conservative 2PL
» transaction stamping (younger transactions aborted)
¢ NO waiting
e cautious waiting
¢ time outs

i_ Deadlock detection (if the transaction load is light or
~ transactions are short and lock only a few items)
+ wait-for graph for deadlock detection

» victim selection o e
» cyclic restarts

Livelock: a transaction cannot proceed for an
indefinite period of time while other transactions in
the system continue normally.

» fair waiting schemes (i.e. first-come-first-served)

18

-

% Locking Granularity

#

#» A database item could be
* a database record
» a field value of a database record
» a disk block
» the whole database
#* Trade-offs

» coarse granularity
+ the larger the data item size, the lower the degree of
concurrency
= fine granularity
» the smaller the data item size, the more locks to be
managed and stored, and the more lock/unlock
operations needed.

-

Other Recovery and Concurrency Strategies

19

= # Data isn’t updated ‘in place’

’5{5. # The database is considered to
be made up of a number of n
fixed-size disk blocks or pages,
.for recovery purposes.

; ; A page table with n entries is
- constructed where the it page
table entry points to the ith
database page on disk.

Current page table points to
most recent current database
% pages on disk

Page table

QI B[W[N|—
e

il

\ page 3

% Recovery: Shadow Paging Technique

Database data
pages/blocks

page 5

page 1

page 4

page 2

page 6

¥ Shadow Paging Technique

‘# When a transaction

new disk page/block

4 | Database data pages (blodks)
o) begins executing
¢ = the current page table | Curent page table page 5 (old)
t is copied into a shadow (zagfr“pda“”g REEES 1 o updatng?taue
;@ ~ page table ' pege
\ﬁ‘shadow page table is / page 4 e 7
: : then saved ; d - h 2
shadow page table is 3 o page 2 (0ld) S
vpr . 4 o 1Y
never modified during 5 3 5
transaction execution 6 R page / S
» Writes operations—new
page 6
copy of database page
A is created and current page 2 (new)
Y page table entry
. modified to point to page 5 (new)

20

 Shadow Paging Technique

- To recover from a failure 7z e)

%; # the state of the database before
; transaction execution is available | &metmeEde | g5 (dd)

(after updating pages Secovpeetaie
through the shadow page table | — (et upcked)

¢ free modified pages

ﬁ-‘ discard currrent page table I pge4 1
Bl . i 2
that state is recovered by g oo 2(0) b3

~ reinstating the shadow page table| f— \ g

to become the current page table g rege3 P

once more Y /

Commiting a transaction Pege6

» discard previous shadow page poge 2 (new)
\’3 = free old page tables that it
' references page 5 (new)

» Garbage collection

¥ Optimistic Concurrency Control

_#:’#No checking while the transaction is executing.
1#Check for conflicts after the transaction.

%} Checks are all made at once, so low transaction execution
overhead

elies on little interference between transactions

¢ = Updates are not applied until end_transaction

- » Updates are applied to local copies in a transaction space.

1. read phase: read from the database, but updates are applied only to

local copies
2. validation phase: check to ensure serialisability will not be validated if
the transaction updates are actually applied to the database
k 3. write phase: if validation is successful, transaction updates applied to
database; otherwise updates are discarded and transaction is aborted
. and restarted.

21

¥ Validation Phase

s # Use transaction timestamps
2} * write_sets and read_sets maintained
Transaction B is committed or in its validation phase

Validation Phase for Transaction A

2 iﬁ-"l'o check that TransA does not interfere with TransB the
- following must hold:

~ » TransB completes its write phase before TransA starts its reads

phase
TransA starts its write phase after TransB completes its write phase,

and the read set of TransA has no items in common with the write
set of TransB
Both the read set and the write set of TransA have no items in

common with the write set of TransB, and TransB completes its read
phase before TransA completes its read phase.

-
»

¥ Conclusions

#* Transaction management deals with two key
» requirements of any database system:
) » Resilience

» in the ability of data surviving hardware crashes and
software errors without sustaining loss or becoming
inconsistent

. * Access Control

» in the ability to permit simultaneous access of data multiple
users in a consistent manner and assuring only authorised
access

-

22

Scanned by CamScanner

LN
N/
/ \
‘.‘\r {
1 !'/ln] i f‘
A\ \/
g B
: |
g f
@
A8
(])
oo

;gﬁﬁﬁgg

IHustration on Graph-Based Protoco!

’
- L 2
.
!
I’ !
N p }
\ ‘
\ |
>
;,
‘
A" N 4
AV ;’f i {1 g ‘1
3]
]

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

©

f‘_“
,n\'"f" (ﬁ,)\‘ o O
Timestamp-based Protocols
The most commonly used concurrency protocol Is the timestamp based
Protocol. This protocol uses either gystem time or logical counter as a
timestamp.
Lock-based pratocols manage the order between the conflicting pairs
ution, whereas timestamp-based

among transactions at the time of exec
Protocols start working as soon as a transaction is created.

Each transaction is issued a timestamp when it enters the system. If

has time-stamp TS(Ti), a new transaction Tj is

an old transaction Ti
(Tj) such that TS(Ti) <TS(Tj).

assigned time-stamp TS

* The protocol Manages concurrent execution such that the timestamps

determine the serializability order.

* In order to assure such behavior, the protocol maintains for each data

Q two timestamp values: +
ot

° W-timestamp(Q) is the largest ime-stamp of any transaction that

; K /\‘ 2|

. N \(
éxecuted write(Q) successfully. T sp
NS
R-timestamp(Q) is the largest time-stamp of any trar%sactnon that
A

el .
executed read(Q) successfully. T,
iyl : K"

Disady

7ol |
0o Deodack qsenvabon ey bagen

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Storage Structure

Relative data and information is stored collectively in file formats. A file is a
sequence of records stored in binary format. A disk drive is formatted into

several blocks that can store records. File records are mapped onto those
disk blocks.

File Organization

File Organization defines how file records are mapped onto disk blocks. We
have four types of File Organization to organize file records —

Sequential

Heap File System File System

DBMS
File Organization

\ o Clustered

Hash File System File System

Heap File Organization

When a file is created using Heap File Organization, the Operating System
allocates memory area to that file without any further accounting details.
File records can be placed anywhere in that memory area. It is the
responsibility of the software to manage the records. Heap File does not
support any ordering, sequencing, or indexing on its own.

Sequential File Organization

Every file record contains a data field (attribute) to uniquely identify that
record. In sequential file organization, records are placed in the file in some

sequential order based on the unique key field or search key. Practically, it
is not possible to store all the records sequentially in physical form.

Hash File Organization

Hash File Organization uses Hash function computation on some fields of
the records. The output of the hash function determines the location of disk
block where the records are to be placed.

Clustered File Organization

Clustered file organization is not considered good for large databases. In
this mechanism, related records from one or more relations are kept in the
same disk block, that is, the ordering of records is not based on primary
key or search key.

Indexing

We know that data is stored in the form of records. Every record has a key
field, which helps it to be recognized uniquely.

Indexing is a data structure technique to efficiently retrieve records from
the database files based on some attributes on which the indexing has been
done. Indexing in database systems is similar to what we see in books.

Indexing is defined based on its indexing attributes. Indexing can be of the
following types —

e Primary Index — Primary index is defined on an ordered data file. The data file
is ordered on a key field. The key field is generally the primary key of the
relation.

e Secondary Index — Secondary index may be generated from a field which is a
candidate key and has a unique value in every record, or a non-key with
duplicate values.

e Clustering Index — Clustering index is defined on an ordered data file. The
data file is ordered on a non-key field.

Ordered Indexing is of two types —

o Dense Index

e Sparse Index

Dense Index

In dense index, there is an index record for every search key value in the
database. This makes searching faster but requires more space to store
index records itself. Index records contain search key value and a pointer to
the actual record on the disk.

China ®*— China Beijing 3,705,386
Canada *—* Canada Ottawa 3,855,081
Russia | Russia Moscow 6,592,735

USA *—>r USA Washington 3,718,691

Sparse Index

In sparse index, index records are not created for every search key. An
index record here contains a search key and an actual pointer to the data
on the disk. To search a record, we first proceed by index record and reach
at the actual location of the data. If the data we are looking for is not where
we directly reach by following the index, then the system starts sequential
search until the desired data is found.

China *— China Beijing 3,705,386
Russia -\ Canada Ottawa 3,855,081

USA -\ Russia Moscow 6,592,735
USA Washington 3,718,691

B+ Tree

A B* tree is a balanced binary search tree that follows a multi-level index
format. The leaf nodes of a B* tree denote actual data pointers. B* tree
ensures that all leaf nodes remain at the same height, thus balanced.

Additionally, the leaf nodes are linked using a link list; therefore, a B* tree
can support random access as well as sequential access.

Structure of B+ Tree

Every leaf node is at equal distance from the root node. A B* tree is of the
order n where n is fixed for every B* tree.

F o> G

Internal nodes —

e Internal (non-leaf) nodes contain at least [n/2] pointers, except the root node.
e At most, an internal node can contain n pointers.

Leaf nodes —

e Leaf nodes contain at least [n/2] record pointers and [n/2] key values.
e At most, a leaf node can contain n record pointers and n key values.

e Every leaf node contains one block pointer P to point to next leaf node and forms
a linked list.

B+ Tree Insertion

e B- trees are filled from bottom and each entry is done at the leaf node.

e If a leaf node overflows —

o Split node into two parts.

o Partition ati = |[(m+1),].

o First i entries are stored in one node.

o Rest of the entries (i+1 onwards) are moved to a new node.

o i» key is duplicated at the parent of the leaf.

e If a non-leaf node overflows —
o Split node into two parts.
o Partition the node ati = [(m+1),.].
o Entries up to i are kept in one node.
o Rest of the entries are moved to a new node.

B+ Tree Deletion

e B+ tree entries are deleted at the leaf nodes.
e The target entry is searched and deleted.

o If it is an internal node, delete and replace with the entry from the left
position.

o After deletion, underflow is tested,

o If underflow occurs, distribute the entries from the nodes left to it.
o If distribution is not possible from left, then

o Distribute from the nodes right to it.
o If distribution is not possible from left or from right, then

o Merge the node with left and right to it.

For a huge database structure, it can be almost next to impossible to search
all the index values through all its level and then reach the destination data
block to retrieve the desired data. Hashing is an effective technique to
calculate the direct location of a data record on the disk without using index
structure.

Hashing uses hash functions with search keys as parameters to generate
the address of a data record.

Hash Organization

« Bucket — A hash file stores data in bucket format. Bucket is considered a unit of

storage. A bucket typically stores one complete disk block, which in turn can
store one or more records.

¢ Hash Function — A hash function, h, is a mapping function that maps all the
set of search-keys K to the address where actual records are placed. It is a
function from search keys to bucket addresses.

Static Hashing

In static hashing, when a search-key value is provided, the hash function
always computes the same address. For example, if mod-4 hash function is
used, then it shall generate only 5 values. The output address shall always
be same for that function. The number of buckets provided remains
unchanged at all times.

Data Buckets
Database
Search Keys C++
100 Java
101 > Android
102 e ® i0S
— =
HTML

Perl

Operation

¢ Insertion — When a record is required to be entered using static hash, the hash
function h computes the bucket address for search key K, where the record will
be stored.

Bucket address = h(K)

¢ Search — When a record needs to be retrieved, the same hash function can be
used to retrieve the address of the bucket where the data is stored.

¢ Delete — This is simply a search followed by a deletion operation.

Bucket Overflow

The condition of bucket-overflow is known as collision. This is a fatal state
for any static hash function. In this case, overflow chaining can be used.

e Overflow Chaining — When buckets are full, a new bucket is allocated for the
same hash result and is linked after the previous one. This mechanism is
called Closed Hashing.

Data Buckets

0

R ... > 6 e > 1
2

... > 8

. e - 9

e Linear Probing — When a hash function generates an address at which data is
already stored, the next free bucket is allocated to it. This mechanism is
called Open Hashing.

Data Buckets

1
D
6

mod(5)

Dynamic Hashing

The problem with static hashing is that it does not expand or shrink
dynamically as the size of the database grows or shrinks. Dynamic hashing
provides a mechanism in which data buckets are added and removed
dynamically and on-demand. Dynamic hashing is also known as extended
hashing.

Hash function, in dynamic hashing, is made to produce a large number of
values and only a few are used initially.

ni

Bucket-1
n2
00 1
01 = % Buckst-2
10 3 n3
11 4
Bucket-3
\ n4
Bucket-4

Organization

The prefix of an entire hash value is taken as a hash index. Only a portion
of the hash value is used for computing bucket addresses. Every hash index
has a depth value to signify how many bits are used for computing a hash
function. These bits can address 2n buckets. When all these bits are
consumed — that is, when all the buckets are full — then the depth value is
increased linearly and twice the buckets are allocated.

Operation

Querying — Look at the depth value of the hash index and use those bits to
compute the bucket address.

Update — Perform a query as above and update the data.

Deletion — Perform a query to locate the desired data and delete the same.

Insertion — Compute the address of the bucket

o If the bucket is already full.

= Add more buckets.
» Add additional bits to the hash value.
= Re-compute the hash function.
o Else
= Add data to the bucket,
o If all the buckets are full, perform the remedies of static hashing.

Hashing is not favorable when the data is organized in some ordering and
the queries require a range of data. When data is discrete and random,
hash performs the best.

Hashing algorithms have high complexity than indexing. All hash operations
are done in constant time.

B-Tree is a self-balanced search tree with multiple keys in every node
and more than two children for every node.

http://btechsmartclass.com/DS/U5_T4.html

B-Tree of Order 4

30

70

8 |25 40150
3|17]||15|21|23||26|28 35|38 42149 56|67 71|73|75

Operations on a B-Tree

e, [tactsast

and that no«
t empty pos

and that no«
iddle value
le for the tre

ove to the ri
ed at that e

http://btechsmartclass.com/DS/U5_T2.html
http://btechsmartclass.com/DS/U5_T2.html

Overview of Storage and Indexing

Data on External Storage

L)

0’0

Disks: Can retrieve random page at fixed cost

* But reading several consecutive pages is much cheaper than
reading them in random order

L)

*

Tapes: Can only read pages in sequence
= Cheaper than disks; used for archival storage

+ File organization: Method of arranging a file of records
on external storage.

*%

= Record id (rid) is sufficient to physically locate record
= [ndexes are data structures that allow us to find the record ids of

records with given values in index search key fields
Architecture: Buffer manager stages pages from external
storage to main memory buffer pool. File and index

layers make calls to the buffer manager. Page: typically
4 Kbytes.

L)

*

Alternative File Organizations

Many alternatives exist, each ideal for some

situations, and not so good in others:

» Heap (random order) files: Suitable when typical
access is a file scan retrieving all records.

» Sorted Files: Best if records must be retrieved in
some order, or only a ‘range’ of records is needed.

= Indexes: Data structures to organize records via
trees or hashing.

- Like sorted files, they speed up searches for a subset of
records, based on values in certain (“search key”) fields

« Updates are much faster than in sorted files.

Indexes

% An index on a file speeds up selections on the
search key fields for the index.

» Any subset of the fields of a relation can be the
search key for an index on the relation.

= Search key is not the same as key (minimal set of
fields that uniquely identify a record in a relation).
< An index contains a collection of data entries,
and supports efficient retrieval of all data
entries k* with a given key value k.

Index Classification

< Primary vs. secondary: If search key contains
primary key, then called primary index.

= Unique index: Search key contains a candidate key.

< Clustered vs. unclustered: If order of data records
is the same as order of data entries, then called
clustered index.

= A file can be clustered on at most one search key.

= Cost of retrieving data records through index varies
greatly based on whether index is clustered or not!

Index Classification

% Dense vs Sparse: If there is an entry in the index
for each key value -> dense index (unclustered
indices are dense). If there is an entry for each
page -> sparse index.

1 Brown

5 Chen
Peterson
Rhodes
Smith
Yu
White

Clustered vs. Unclustered Index

+ To build clustered index, first sort the Heap file (with
some free space on each page for future inserts).

= Overflow pages may be needed for inserts. (Thus, order of
data recs is “close to’, but not identical to, the sort order.)

Index entries
CLUSTERED direct search for UNCLUSTERED
data entries

— Data entries Data entries

(Index File)
(Data file)

Data Records Data Records

|

Entries <= 17

Root

13

Example B+ Tree

Entries > 17

27

30

5*

7*

8*

14*

16*

22
*

24~

27*

29*

33*

34*

38*

39*

< (GoOod

+ Insert/delete: Find data entry in leaf, then

 for range queries.

change it. Need to adjust parent sometimes.
All leaves at he same height.

Hash-Based Indexes

% Good for equality selections.

* Index is a collection of buckets. Bucket = primary
page plus zero or more overflow pages.

* Hashing function h: h(r) = bucket in which record
r belongs. h looks at the search key fields of r.

% Buckets may contain the data records or just
the rids.

% Hash-based indexes are best for equality
selections. Cannot support range searches

Static Hashing

» # primary pages fixed, allocated sequentially, never de-allocated;
overflow pages if needed.

» h(k) mod N = bucket to which data entry with key k belongs. (N =
of buckets)

Long overflow chains can develop and degrade performance.
« Extendible and Linear Hashing: Dynamic techniques to fix this.

h(key) mod N g
ke
Y h
N-1

Primary bucket pages Overflow pages

10

Static Hashing (Contd.)

% Buckets contain data entries.

< Hash fn works on search key tield of record r. Must
distribute values over range 0 ... M-1.
= h(key) = (a * key + b) usually works well.
= a and b are constants; lots known about how to tune h.

11

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
» B: The number of data pages
» R: Number of records per page
« D: (Average) time to read or write disk page

» Measuring number of page I/O’s ignores gains of
pre-fetching a sequence of pages; thus, even /O
cost is only approximated.

= Average-case analysis; based on several simplistic
assumptions.

< Good enough to show the overall trends!

12

Comparing File Organizations

4

» Heap files (random order; insert at eof)

L)

4

» Sorted files, sorted on <age, sal>

» Clustered B+ tree file, Alternative (1), search
key <age, sal>

L)

» Heap file with unclustered B + tree index on
search key <age, sal>

» Heap file with unclustered hash index on
search key <age, sal>

13

Choice oflndexes <+ What indexes should we

create?

% One approach: Consider the most important queries
in turn. Consider the best plan using the current
indexes, and see if a better plan is possible with an
additional index. If so, create it.

= Obviously, this implies that we must understand how a
DBMS evaluates queries and creates query evaluation plans!

* For now, we discuss simple 1-table queries.
% Before creating an index, must also consider the
impact on updates in the workload!

= Trade-off: Indexes can make queries go faster, updates
slower. Require disk space, too.

Index Selection Guidelines

% Attributes in WHERE clause are candidates for index keys.
= Exact match condition suggests hash index.

= Range query suggests tree index.

* Clustering is especially useful for range queries; can also help on
equality queries if there are many duplicates.

% Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.

% Try to choose indexes that benefit as many queries as
possible. Since only one index can be clustered per relation,
choose it based on important queries that would benefit the
most from clustering.

17

|

Examples of Clustered Indexes

% B+ tree index on E.age can be used ¢r;ver E.dno
to get qualifying tuples. FROM Emp E
» How selective is the condition? WHERE E.age>40
= Is the index clustered?

% Consider the GROUP BY query. FROM Emp E
« If many tuples have E.age > 10, using HERE E.age>10
E.age index and sorting the retrieved ROUP BY E.dno
tuples may be costly.

» Clustered E.dno index may be better!

+ Equality queries and duplicates: SELECT E.dno
FROM Emp E

« Clusteri E.hobby helps!
usterimg on L.11oooy nelps WHERE E.hobby=Stamps
18

Indexes with Composite Search Keys

> Composite Search Keys: Search Examples of composite key
on a combination of fields.

" Equahty query: Every field 11.80 »
value is equal to a constant 1210 12
value. E.g. wrt <sal,age> index: 12’20 name age sal 19

* age=20 and sal =75 13.75 bob 12 10 13
= Range query: Some field value <age, sal> cal 11 80 <age>
is not a constant. E.g. joe 12 20
e age =20; or age=20 and sal > 10 10,12 sue 13 75 10
C .. 20
« Data entries in index sorted 20,12 Data records
75,13 sorted by name 75
by search key to support 8011 50
range queries. <sal, age> <sal>
¢ Order or attributes is Data entries in index Data entries
relevant sorted by <sal,age> sorted by <sal>

19

Composite Search Keys

% To retrieve Emp records with age=30 AND sal=4000,
an index on <age,sal> would be better than an index
on age or an index on sal.

= Choice of index key orthogonal to clustering etc.

% If condition is: 20<age<30 AND 3000<sal<5000:

» Clustered tree index on <age,sal> or <sal,age> is best.
% If condition is: age=30 AND 3000<sal/<5000:

= Clustered <age,sal> index much better than <sal,age>
index!

+ Composite indexes are larger, updated more often.

20

Summary

+ Data entries can be actual data records, <key,
rid> pairs, or <key, rid-list> pairs.

= Choice orthogonal to indexing technique used to
locate data entries with a given key value.

% Can have several indexes on a given file of

data records, each with a different search key.

+ Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and
dense vs. sparse. Differences have important
consequences for utility / performance.

21

% Understanding the nature of the workload for the
application, and the performance goals, is essential
to developing a good design.

= What are the important queries and updates? What
attributes/relations are involved?

+ Indexes must be chosen to speed up important
queries (and perhaps some updates!).

» Index maintenance overhead on updates to key fields.
« Choose indexes that can help many queries, if possible.

» Build indexes to support index-only strategies.

= Clustering is an important decision; only one index on a
given relation can be clustered!

= Order of fields in composite index key can be important.

Chapter 5 - Tree Indexes

Given a dynamic file (many insertions and deletions)

we would like to do frequent independent fetches, consider
+ anunsorted file

« asorted file

« having an index (look up table)

Inverted Files:
« A simplest index structure that is in the form of an ordered list
where each each entry is a (key, ptr) pair.
« difficult to maintain
— After insertion and deletions, whole file needs to be shifted.

Most DBMSs use B+-trees and hash table utilities.
« we must learn how they work and what performance to expect.

K. Dincer Chapter 5 - File Organization 1
and i

ISAM (Indexed Sequential Access
Method)

« the most extensively used indexing method in last decade.
« mostly promoted by IBM and INGRES DBMS, but obsolete today.

« ISAMis simple and efficient as long as no new records are added
It contains
— amemory-resident cylinder index that keeps the highest valued key
for each cylinder
— each cylinder contains an index that keeps the highest valued key
for each block higl high

igh
cylinder value clinder yalue

memory-resident
cylinder index -m 2878 .

high high
block value block value 77

index at
eylinder 1 -mn-

K. Dincer Chapter 5 - File Organization 2

Tp=1+s+btt+r+btt
LSRR

Time to fetch the Time to fetch
index on cylinder correct block

T, = same as the sorted file
(Actually a little bit longer since some space left on each cylinder for overflow.)

Disadvantages of ISAM:
« As new records are added, the ISAM file degrades in performance.
« Ithas to be reorganized at high cost.

K. Dincer Chapter 5 - File Organization 3
and i

Overflow Chains in ISAM

« We start with some empty tracks in each cylinder for overflow

+ When a new record is added, old records are shifted to make place for
the new one.

« The record which had the largest key in the block is moved to the
overflow area.

« When the overflow area fills up, overflow is written to another cylinder
« Eventually the performance gets very slow.

Performance

« performance gets really poor when the distribution of new records could
not be predicted in advance - very long overflow chains may occur

« With good prediction, enough space can be reserved in areas which
are expected to grow

K. Dincer Chapter 5 - File Organization 4

B+-Trees

* Most used indexing method today.
* InB+-Trees:
— nodes tend to have over 100 children
— all leaves are on the same level
— leaves contain the actual pointers to data on disk

Any indexing structure which supports an ordering on a
large file is likely to be implemented by a B+-tree.
— we can make efficient range queries.

« We shall show how a B+-tree can be used as a secondary or
primary indexing method.

« We will look at the costs of fetching, sequential operations, and
insertion/deletion.

K. Dincer Chapter 5 - File Organization 5
and i

Structure of a B+-Tree
Y
Index Entries

(Direct Search)

Index File

Data Entries
[«
Lol g oo <[] Joines.

FEFE BRI PREL] FRRL] FRER]

Example of a B+-Tree, Order v =2

K. Dincer Chapter 5 - File Organization 6

Definition of a B+-Tree of Order v

The root has at least two children unless it is a leaf.

No internal node has more than 2v keys.

— Root may have less keys

— Internal nodes contain only keys and addresses of nodes on
the next lower level.

All leaves are on the same level.

— When B+-tree is used as a primary index, the leaves contain
the data records.

— When B+-tree is used as a secondary index, the leaves
contain the keys and record addresses.

An internal node with k keys has k +1 children.

Bucket factor (Bkfr) : the # records that can fit in a leaf node.
Fan-out: the average # children of an internal node.

K.

. Dincer Chapter 5 - File Organization 7

and

K.

B+-trees are short and wide.
The records take up more space than the keys and
addresses.
— Typically internal nodes carry on 100-200 keys, leaves carry
on 15 records.
A primary index determines the way the records are
actually stored.
Clustering index: records are stored together in
buckets acc.to the values of the key.
— The records in a given bucket will have nearby key values.
— The index only note the lowest or the highest key in a given
bucket.
« For this reason, clustering index, is often called a sparse
index (e.g., ISAM, a B+-tree with data in the leaves)

. Dincer Chapter 5 - File Organization

K.

A B+-tree can also be used for a secondary index.

— The records in the file are not grouped in buckets according
to the keys of secondary indexes.

— A secondary index is also a dense index where an entry
exists for each record in the file (e.g., a B+-tree where
leaves contain keys and addresses of records)

There may be many secondary indexes for the same
file.

Why not have a secondary index on each field in the file?

— this would need repeating all the information in the file in the
leaves of the trees.

— with many indexes, update costs becomes high.

. Dincer Chapter 5 - File Organization 9

and

	Here we Discuss only DDL and DML
	Relationship and Relationship Set :
	Notation to Represent Relation Type in ER Diagram-
	Degree of a Relationship Type-
	Role Names-

	Recursive Relationship
	 Notations of Different Types of Cardinality In ER Diagram –

	How to Draw ER Diagram ??
	Steps - How to Draw ER Diagram -
	Need of ER Diagram -
	Example of drawing ER Diagram -

	Normalisation or Schema Refinement or Database design
	Anomalies or Problems Facing without Normalisation :
	Types of Anomalies : (Problems because of Redundancy)
	Solutions To Anomalies : Decomposition of Tables – Schema Refinement
	There are some Anomalies in this again –
	What is the Solution ?? Solution :

	Functional dependency in DBMS
	Types of Functional Dependencies

	Trivial functional dependency
	Non trivial functional dependency
	Multivalued dependency
	Inference Rules
	How to Find Candidate Key using Functional Dependencies –

	Functional Dependency Set Closure (F+)
	Example of Functional Dependency Set Closure :

	First normal form
	Designs that Violate 1NF-Below is a table that stores the names and telephone numbers of customers. One requirement though is to retain multiple telephone numbers for some customers. The simplest way of satisfying this requirement is to allow the "Tel...
	Designs that Comply with 1NF-To bring the model into the first normal form, we split the strings we used to hold our telephone number information into "atomic" (i.e. indivisible) entities: single phone numbers. And we ensure no row contains more than ...

	Second normal form
	File Organization
	Heap File Organization
	Sequential File Organization
	Hash File Organization
	Clustered File Organization
	Dense Index
	Sparse Index
	B+ Tree
	Structure of B+ Tree
	B+ Tree Insertion
	B+ Tree Deletion

	Hash Organization
	Static Hashing
	Operation

	Bucket Overflow
	Dynamic Hashing
	Organization
	Operation
	B - Trees
	Example
	Operations on a B-Tree
	Search Operation in B-Tree
	Insertion Operation in B-Tree
	Example (1)

