
UNIT - I
INTRODUCTION to DBMS (Part -I)

 Introduction

o What is a database management system?

o Why study databases? Why not use file systems?

o The three-level architecture

o Schemas and instances

 Overview

o Data models, E-R model, Relational model

o Data Definition Language, Data Manipulation Language

o SQL

o Transaction Management, Storage Management

o User types, database administrator

o System Structure

1.1 What is a Database Management System?

Data
 Data is raw fact or figures or entity.

 When activities in the organization takes place, the effect of these activities need to be recorded

which is known as Data.

Information
 Processed data is called information

 The purpose of data processing is to generate the information required for carrying out the

business activities.

Database
 Database may be defined in simple terms as a collection of data

 A database is a collection of related data.

Database Management System
 A Database Management System (DBMS) is a collection of program that enables user to create

and maintain a database.

 The DBMS is hence a general purpose software system that facilitates the process of defining

constructing and manipulating database for various applications.

 History

o 1950s-60s: magnetic tape and punched cards

o 1960s-70s: hard disks, random access, file systems

o 1970s-80s: relational model becoming competitive

o 1980s-90s: relational model dominant, object-oriented databases

o 1990s-00s: web databases and XML

Why Study Databases?

 They touch every aspect of our lives

 Applications:
o Banking: all transactions

o Airlines: reservations, schedules

o Universities: registration, course enrolment, grades

o Sales: customers, products, purchases

o Manufacturing: production, inventory, orders, supply chain

o Human resources: employee records, salaries, tax deductions

o Telecommunications: subscribers, usage, routing

o Computer accounts: privileges, quotas, usage

o Records: climate, stock market, library holdings

 Explosion of unstructured data on the web:

o Large document collections

o Image databases, streaming media

1.2 Why not use file systems?

 Data redundancy and inconsistency

o Multiple file formats

o Duplication of information in different files

 Difficulty in accessing data
o Need to write a new program to carry out each new task

 Data isolation
o Multiple files and formats

 Integrity problems
o Integrity constraints (e.g. account balance > 0) become part of program code

o Hard to add new constraints or change existing ones

 Maintenance problems
o When we add a new field, all existing applications must be modified to ignore it

 Atomicity of updates
o Failures may leave database in an inconsistent state with partial updates carried out

o E.g. transfer of funds from one account to another should either complete or not happen at all

 Concurrent access by multiple users
o Concurrent accessed needed for performance

o Uncontrolled concurrent accesses can lead to inconsistencies

 E.g. two people reading a balance and updating it at the same time

o Security problems

Database systems offer solutions to all the above problems

Advantages of DBMS.

 Due to its centralized nature, the database system can overcome the disadvantages of the file system-

based system

1. Data independency: Application program should not be exposed to details of data representation

 and storage DBMS provides the abstract view that hides these details.

2. Efficient data access: DBMS utilizes a variety of sophisticated techniques to store and retrieve data

 efficiently.

3. Data integrity and security: Data is accessed through DBMS, it can enforce integrity constraints.

 E.g.: Inserting salary information for an employee.

4. Data Administration: When users share data, centralizing the data is an important task, Experience

 professionals can minimize data redundancy and perform fine tuning which reduces retrieval time.

5. Concurrent access and Crash recovery: DBMS schedules concurrent access to the data. DBMS

protects user from the effects of system failure.

1.3 The Levels of Abstraction

 Physical level: how a record is stored on disk

 Logical level: describes data stored in database, and the relationships among the data.

 type customer = record

 name : string;

 street : string;

 city : integer;

 end;

 View level: application-specific selections and arrangements of the data

 hide details of data types

 Views can also hide information for security reasons

1.4 Schemas vs. Instances

 Schema
o the logical structure of the database.

o e.g., the database consists of information about a set of customers and accounts and the

relationship between them.

o Analogous to type information of a variable in a program.

 Instance

o the actual content of the database at a particular point in time.

o Analogous to the value of a variable.

 Data Independence
o the ability to modify a schema in one-level (i.e. Internal Schema or Conceptual Schema)

without affecting a schema in the next-higher-level (i.e. Conceptual or External schema)

o Applications depend on the logical schema

o Database engines take care of efficient storage and query processing

o Data independence are of two types:

 Physical Data Independence: Physical data independence is the ability to modify the

physical schema – i.e. internal schema which describes the physical storage devices or

structure to store the data – without affecting the conceptual schema – application

programs.

 Logical Data Independence: Logical data is the ability to modify the logical schema –

i.e. Conceptual Schema, which decides what information is to be kept in the database

– without affecting the next higher level schema – i.e., External Schema – application

program.

1.5 Data Models

 A collection of tools for describing

o data

o data relationships

o data semantics

o data constraints

 The data models are divided into different groups

o Object-Based Logical Data Models

o Record-Based Logical Data Models

 Object-Based Logical Model

o Object – based logical models are used in describing data at logical level and view level.

Logical and view levels are used to retrieve the data.

o Object-Based Logical Models are described in the different following models:

 The Entity-Relationship Model

 Object-Oriented Model

 Entity-Relationship Model

 An entity is a thing or object in the real world that is distinguishable from other objects.

 The Entity – Relationship Model is based on a collection of basic objects, called entities, and

the relationship among these objects.

 Example of schema in the entity-relationship model

 Rectangles represent entities

 Diamonds represent relationship among entities

 Ellipse represents attributes

 Lines represents links of attributes to entities to relations

 Object-Oriented Model

 Like the E-R model, the Object-Oriented Model is based on a collection of objects. An object

contains values stored in instance variables, within the object also contains bodies of code

that operates on the object. These bodies of code are called as methods.

 Objects that contain the same types of values and the same methods are grouped together into

classes. A class may be viewed as a definition for objects. This combination of data and

methods comprising a definition is similar to a Programming-language abstract data type.

 The only way in which one object can access the data of another object is by invoking a

method of that other object. This action is called sending a message to the object.

 Record-Based Logical Models

 Describes data at logical and view levels.

 Compared with object-based data models, the record-based logical models specify the overall

 logical structure of the database and provide higher level implementation.

o Relational Model

 Relational Model

 The relational model represents both data (entities) and relationships among in the form of

 tables. Each table has multiple columns and each column has a unique name.

 The description of data in terms of tables is called as relations, from the above Customer and

Accounts relations, we can make a condition that customer details are maintained in Customer table

and their deposit details are maintained in the account table database.

1.6 DATABASE LANGUAGES

 SQL language is divided into four types of primary language statements: DML, DDL, DCL

and TCL. Using these statements, we can define the structure of a database by creating and altering

database objects, and we can manipulate data in a table through updates or deletions. We also can

control which user can read/write data or manage transactions to create a single unit of work.

 The four main categories of SQL statements are as follows:

1. DML (Data Manipulation Language)

2. DDL (Data Definition Language)

3. DCL (Data Control Language)

4. TCL (Transaction Control Language)

Here we Discuss only DDL and DML

 Data Definition Language (DDL)

 Specification notation for defining the database schema

o E.g.

 create table account (

 account-number char(10),

 balance integer)

 DDL compiler generates a set of tables stored in a data dictionary:

o Database schema

o Specification of storage structures and access methods

 Data Manipulation Language (DML)

 Language for accessing and manipulating the data organized by the appropriate data model

o DML also known as query language

 Two classes of languages

o Procedural – user specifies what data is required and how to get those data

o Nonprocedural – user specifies what data is required without specifying how to get

those data

 SQL is the most widely used query language

1.7 Overall System Structure of DBMS
 The following figure shows the structure supporting parts of a DBMS with some simplification based

on the relation data model.

 A DBMS is divided into two modules (parts)
o Query processor

o Storage Manager

 Query Processor

The Query processor components are:
o DDL Interpreter: This interprets DDL statements and records the definitions in the data dictionary.
o DML Compiler: as any other compiler, DML Compiler converts the DML Statements into low-level

instructions.
o Query Evaluation: This executes low-level instructions generated by the DML compiler.

 Storage Manager

 A storage manager is a program module that provides the interface between the low-level data stored in the

database and the application programs and queries submitted to the system.

 The storage manager is responsible for storing, retrieving and updating data in the database.

 The storage manager components include:

o Authorization and integrity Manager: This tests for the satisfaction of integrity constraints and

checks the authority of users to access data.
o Transaction Manager: This ensures that the database remains in a consistent state despite system

failures, and that concurrent transaction executions proceed without conflicting.
o File Manager: This manages the allocation of space on disk storage and the data structures used to

represent information stored on disk.
o Buffer Manager: This is responsible for fetching data from disk storage into main memory, and

deciding what data to cache in main memory.

 The storage manager implements several data structures as part of the physical system implementation:

o Data Files: This store the database itself.
o Data Dictionary: This stores metadata about the structure of the database, in particular the schema of

the database.
o Indices: This provides fast access to data items that hold particular values.

 Database Users

 Users are differentiated by the way they expect to interact with the system

 Application programmers – interact with system through DML calls

 Sophisticated users – form requests in a database query language

 Specialized users – write specialized database applications that do not fit into the traditional

data processing framework

 Naïve users – invoke one of the permanent application programs that have been written

previously

 E.g. people accessing database over the web, bank tellers, clerical staff

 Database Administrator

 Coordinates all the activities of the database system; the database administrator has a good

understanding of the enterprise’s information resources and needs.

 Database administrator's duties include:

o Schema definition

o Storage structure and access method definition

o Schema and physical organization modification

o Granting user authority to access the database

o Specifying integrity constraints

o Acting as liaison with users

o Monitoring performance and responding to changes in requirements

 Transaction Management

 A transaction is a collection of operations that performs a single logical function in a database

application
o E.g. transfer funds from one account to another

 Transaction-management component ensures that the database remains in a consistent state despite

system failures

 Concurrency-control manager controls the interaction among the concurrent transactions, to ensure

the consistency of the database.
o E.g. simultaneous withdrawals

 ACID Properties:

A - Atomicity / Accessing the Data

C - Concurrency Access

I - Integrity Problems / Inconsistency

D - Data Redundancy

UNIT - I
ENTITY-RELATIONSHIP MODEL (Part -II)

Topics :

 Entity Sets

 Relationship Sets

 Mapping Constraints

 Keys

 E-R Diagram

 Extended E-R Features

 Design of an E-R Database Schema

 Reduction of an E-R Schema to Tables

 Entity Sets

 A database can be modeled as:

o a collection of entities,

o Relationship among entities.

 An entity is an object that exists and is distinguishable from other objects.

o E.g. specific person, company, event, plant

 Entities have attributes

o E.g: people have names and addresses

 An entity set is a set of entities of the same type that share the same properties.

o Example: set of all persons, companies, courses, books

 Entity Sets customer and loan

 Attributes

An entity is represented by a set of attributes that is descriptive properties possessed by all members

of an entity set.

Domain – the set of permitted values for each attribute

Attribute types:
Simple and composite attributes.

Simple Attribute

Single-valued and multi-valued attributes
 E.g. multi valued attribute: phone-numbers

Multi valued Attribute

https://i1.wp.com/www.edugrabs.com/wp-content/uploads/2015/07/Multivalued-Attribute-Types-of-Attributes-in-DBMS.png

Derived attributes
 Can be computed from other attributes

 E.g. age, given date of birth

 Derived attributes

Key Attribute
 Represents primary key. (main characteristics of an entity). It is an attribute, that has distinct value for

each entity/element in an entity set. For example, Roll number in a Student Entity Type.

Key Attribute

 Composite Attributes

Relationship and Relationship Set :

Relationships connect the entities and represent meaningful dependencies between them. It represents an

association among several entities.

Relationships sets is a set of relationships of the same type. It is a mathematical relation on entity sets

(n>=2). Relationship set R is a subset of –

{(r1,r2,r3,....rn)| r1∈E1, r2∈E2, rn∈En}

where r1,r2,….rn are called relationships and E1,E2,….En are entity sets.

The way in which two or more entity types are related is called relation type.

For example, consider a relationship type WORKS_FOR between the two entity types EMPLOYEE and

DEPARTMENT, which associates or links each employee with the department the employee works for.

The WORKS_FOR relation type is shown as –

https://i1.wp.com/www.edugrabs.com/wp-content/uploads/2015/07/Derived-Attribute-Types-of-Attributes-in-DBMS.png
https://i2.wp.com/www.edugrabs.com/wp-content/uploads/2015/07/Key-Attribute.png

In the above figure, each instance of relation type WORKS_FOR i.e.(r1, r2,…,r5) is connected to instances

of employee and department entities. Employee e1, e2 and e5 work for department d2 and employee e3 and

e4 work for department d1.

Notation to Represent Relation Type in ER Diagram-

Relation types are represented as diamond shaped boxes.

Degree of a Relationship Type-

The number of participating entity types is known as the degree of relationship type.

Types of Relationship Type Based on Degree –

 Binary Relationship – A relationship type of degree two is called binary relationship. The

 WORKS_FOR in above figure is a binary relationship as there are two participating entities-

 employee and department.

 Ternary Relationship- A relationship type of degree three is a ternary relationship for

example, in the below figure supply relationship connects three entities SUPPLIER, PART AND

PROJECT.

The above diagram can be read as – a supplier supplies the parts to projects

 N-ary Relationship Set – A relationship type of degree n is called n ary relationship . For

example

Role Names-

A relationship type has a name which signifies what role a participating entity plays in that relationship

instance. The role names helps to explain what the relationship means.

In the first example WORKS_FOR relationship type, employee plays the role of worker and department

plays the role of employee(because a department consists of a number of employees.

Recursive Relationship

If the same entity type participate more than once in a relationship type in different roles then such

relationship types are called recursive relationship. For example, in the below figure REPORTS_TO is

a recursive relationship as the Employee entity type plays two roles – 1) Supervisor and 2) Subordinate.

 Mapping Cardinalities

 Express the number of entities to which another entity can be associated via a relationship set.

 Most useful in describing binary relationship sets.

 For a binary relationship set the mapping cardinality must be one of the following types:

 One-to-One Cardinality (1:1)

 One-to-Many Cardinality (1:m)

 Many-to-One Cardinality (m:1)

 Many-to-Many Cardinality (m:n)

 Notations of Different Types of Cardinality In ER Diagram –

 Mapping Cardinalities affect ER Design

• Can make access-date an attribute of account, instead of a relationship attribute, if each account can

have only one customer

o I.e., the relationship from account to customer is many to one,

 E-R Diagrams

• Rectangles represent entity sets.

• Diamonds represent relationship sets.

• Lines link attributes to entity sets and entity sets to relationship sets.

• Ellipses represent attributes

o Double ellipses represent multivalued attributes.

o Dashed ellipses denote derived attributes.

• Underline indicates primary key attributes

 E-R Diagram with Composite, Multi valued, and Derived Attributes

o Composite attributes: The attributes that can be divided into subparts are known as

composite attributes. Ex: name can be divided into first name, middle name and last name.

o Multi valued attributes: The attributes that have many values for a particular entity. Ex:

name. There can be more than one name for customer.

o Derived attribute: The value for this type of attribute can be derived from the values of

other related attributes or entities.

 Relationship Sets with Attributes

 Roles
 Entity sets of a relationship need not be distinct

 The labels “manager” and “worker” are called roles; they specify how employee entities
interact via the works-for relationship set.

 Roles are indicated in E-R diagrams by labeling the lines that connect diamonds to

rectangles.

 Role labels are optional, and are used to clarify semantics of the relationship.

 Cardinality Constraints

 We express cardinality constraints by drawing either a directed line (), signifying “one,” or an
undirected line (—), signifying “many,” between the relationship set and the entity set.

 E.g.: One-to-one relationship:
o A customer is associated with at most one loan via the relationship borrower

o A loan is associated with at most one customer via borrower

 One-To-Many Relationship

 In the one-to-many relationship a loan is associated with at most one customer via borrower, a

customer is associated with several (including 0) loans via borrower

 Many to One Relationship

 In a many-to-one relationship a loan is associated with several (including 0) customers via borrower,

a customer is associated with at most one loan via borrower

 Many to Many Relationship

 A customer is associated with several (possibly 0) loans via borrower

 A loan is associated with several (possibly 0) customers via borrower

 Participation of an Entity Set in a Relationship Set

 Total participation (indicated by double line): every entity in the entity set participates in at least one

relationship in the relationship set

o E.g. participation of loan in borrower is total

 Every loan must have a customer associated to it via borrower.

 Partial participation: Some entities may not participate in any relationship in the relationship set.

o E.g. participation of customer in borrower is partial

 Keys

 A super key of an entity set is a set of one or more attributes whose values uniquely determine each

entity.

 A candidate key of an entity set is a minimal super key

o Customer-id is candidate key of customer
o account-number is candidate key of account

 Although several candidate keys may exist, one of the candidate keys is selected to be the primary

key.

 Keys for Relationship Sets

 The combination of primary keys of the participating entity sets forms a super key of a relationship

set.

o (customer-id, account-number) is the super key of depositor

o NOTE: this means a pair of entity sets can have at most one relationship in a particular

relationship set.

 E.g. if we wish to track all access-dates to each account by each customer, we cannot

assume a relationship for each access. We can use a multi valued attribute though

 Must consider the mapping cardinality of the relationship set when deciding the what are the

candidate keys

 Need to consider semantics of relationship set in selecting the primary key in case of more than one

candidate key

 E-R Diagram with a Ternary Relationship

 Cardinality Constraints on Ternary Relationship

 We allow at most one arrow out of a ternary (or greater degree) relationship to indicate a cardinality

constraint

 E.g. an arrow from works-on to job indicates each employee works on at most one job at any branch.

 If there is more than one arrow, there are two ways of defining the meaning.

o E.g a ternary relationship R between A, B and C with arrows to B and C could mean

o 1. each A entity is associated with a unique entity from B and C or

o 2. each pair of entities from (A, B) is associated with a unique C entity, and each pair

(A, C) is associated with a unique B

o Each alternative has been used in different formalisms

o To avoid confusion we outlaw more than one arrow

 Design Issues

 Use of entity sets vs. attributes : Choice mainly depends on the structure of the enterprise being

modeled, and on the semantics associated with the attribute in question.

 Use of entity sets vs. relationship sets: Possible guideline is to designate a relationship set to describe

an action that occurs between entities.

 Binary versus n-ary relationship sets : Although it is possible to replace any nonbinary (n-ary, for n

> 2) relationship set by a number of distinct binary relationship sets, a n-ary relationship set shows

more clearly that several entities participate in a single relationship.

 Placement of relationship attributes

 Summary of Symbols Used in E-R Notation

 Extended E-R Features

o Weak entity sets

o Specialization

o Generalization

o Aggregation

 Weak Entity Sets
 Assumption: entity sets always have a key

o This is not always true
 Examples:

o Dependents covered by an employee’s insurance policy

o Film crews working at a movie studio

o Species within a genus

 Properties

o Weak entity set lacks a key

o Existence of weak entities depends on existence of corresponding entities in the

“identifying entity set”
 i.e. the participation of the weak entity in the database is only by virtue of its

relationship to the identifying entity

 E.g. we’re not interested in film crews except insofar as they are associated with a

movie studio (an idiosyncratic property of our enterprise).

 Definition: An entity set that does not have a primary key

 The existence of a weak entity set depends on

o the existence of a identifying entity set

o must relate to the identifying entity set via a total, many-to-one relationship set

o Identifying relationship depicted using a double diamond

 We depict a weak entity set by double rectangles.

 We underline the discriminator of a weak entity set with a dashed line.

 payment-number – discriminator of the payment entity set

 Primary key for payment – (loan-number, payment-number)

 Note: the primary key of the strong entity set is not explicitly stored with the weak entity set, since it

is implicit in the identifying relationship.

 If loan-number were explicitly stored, payment could be made a strong entity, but then the

relationship between payment and loan would be duplicated by an implicit relationship defined by

the attribute loan-number common to payment and loan.

 Specialization

Top-down design process

Start with few entity sets having many attributes
E.g. person entity may have attributes suitable for students, lecturers, employees, employers, etc.

we identify distinctive sub-groupings within an entity set These sub-groupings become lower-level

entity sets

They have attributes or participate in relationships that do not apply to the higher-level entity
set
Depicted by a triangle component labeled ISA

E.g. customer “is a” person

Inheritance

a lower-level entity set inherits all the attributes and relationship participation of the higher-
level entity set to which it is linked.

Specialization Example

 Generalization

 A bottom-up design process

o start with lots of distinct entities that share attributes
o Combine a number of entity sets that share the same attributes into a higher-level entity

set.
 Specialization and generalization are simple inversions of each other; they are represented in an E-R

diagram in the same way.

 Specialization and Generalization

 Can have multiple specializations of an entity set based on different features.

 E.g. permanent-employee vs. temporary-employee, in addition to officer vs. secretary vs. teller.

 Each particular employee would be

o a member of one of permanent-employee or temporary-employee,
o and also a member of one of officer, secretary, or teller

 The ISA relationship also referred to as super-class - subclass relationship.

 Design Constraints on a Specialization/Generalization

 Constraint on which entities can be members of a given lower-level entity set.

o condition-defined
 E.g. all customers over 65 years are members of senior-citizen entity set; senior-

citizen ISA person.

o user-defined

 Constraint on whether or not entities may belong to more than one lower-level entity set within a

single generalization.

o Disjoint
 an entity can belong to only one lower-level entity set

 write disjoint next to the ISA triangle

o Overlapping
 an entity can belong to more than one lower-level entity set

 Completeness constraint

o Does an entity in the higher-level entity set have to belong to at least one of the lower-level

entity sets?

 Total

o an entity must belong to one of the lower-level entity sets

 Partial

o an entity need not belong to one of the lower-level entity sets
 Aggregation

 Consider the ternary relationship works-on

 Suppose we want to record managers for tasks performed by an employee at a branch.

 works-on and manages represent overlapping information

 Every manages relationship corresponds to a works-on relationship
 some works-on relationships may not correspond to any manages relationships
 we can’t discard the works-on relationship

 Eliminate this redundancy via aggregation

o Treat works-on relationship as an abstract entity
o Allow relationships between relationships!

 Abstraction of relationship into new entity

 Without introducing redundancy, the following diagram represents:

o An employee works on a particular job at a particular branch
o An employee, branch, job combination may have an associated manager

 E-R Diagram with Aggregation

 E-R Design Principles

 Faithfulness

o Entities, attributes and relationships should reflect reality
o Sometimes the correct approach is not obvious

 E.g. course and instructor entities and teaching relationship

 What are the cardinality constraints? It depends…

 Avoiding Redundancy

o No information should be repeated
 Wastes space, leads to consistency problems

 Simplicity

o Some relationships may be unnecessary
 E.g. student member-of student-body attends course vs student attends course

 Choosing the right kind of element

o The use of an attribute or entity set to represent an object
o Whether a real-world concept is best expressed by an entity set or a relationship set

 Choosing the right relationships

o The use of a ternary relationship versus a pair of binary relationships

o The use of a strong or weak entity set.

o The use of specialization/generalization – contributes to modularity in the design.

o The use of aggregation – can treat the aggregate entity set as a single unit without concern for

the details of its internal structure.

 E-R Diagram for a Banking Enterprise

 Reduction of an E-R Schema to Tables

 Primary keys allow entity sets and relationship sets to be expressed uniformly as tables which

represent the contents of the database.

 A database which conforms to an E-R diagram can be represented by a collection of tables.

 For each entity set and relationship set there is a unique table which is assigned the name of the

corresponding entity set or relationship set.

 Each table has a number of columns (generally corresponding to attributes), which have unique

names.

 Converting an E-R diagram to a table format is the basis for deriving a relational database design

from an E-R diagram.

 Representing Entity Sets as Tables

 A strong entity set reduces to a table with the same attributes.

 Composite and Multivalued Attributes

 Composite attributes are flattened out by creating a separate attribute for each component attribute

 E.g. given entity set customer with composite attribute name with component attributes
first-name and last-name the table corresponding to the entity set has two attributes
 name.first-name and name.last-name

 A multivalued attribute M of an entity E is represented by a separate table EM

 Table EM has attributes corresponding to the primary key of E and an attribute
corresponding to multivalued attribute M

 E.g. Multivalued attribute dependent-names of employee is represented by a table
 employee-dependent-names(employee-id, dname)

 Each value of the multivalued attribute maps to a separate row of the table EM
 E.g., an employee entity with primary key John and

dependents Johnson and Johndotir maps to two rows:

 (John, Johnson) and (John, Johndotir)

 Representing Weak Entity Sets

 A weak entity set becomes a table that includes a column for the primary key of the identifying

strong entity set

 Representing Relationship Sets as

 A many-to-many relationship set is represented as a table with columns for the primary keys of the

two participating entity sets, and any descriptive attributes of the relationship set.

 E.g.: table for relationship set borrower

1.13 Conceptual Design with ER Model

 Developing an ER diagram presents several design issues, including the following:

o Entity versus Attribute.

o Entity versus Relationship

o Binary versus Ternary Relationships.

o Aggregation versus Ternary Relationships.

 Entity versus Attribute

 While identifying the attributes of an entity set, it is sometimes not clear, whether a property should be

modeled as an attribute or as an entity set.

 Example: consider the entity set employee with attributes employees name and telephone number. It can

easily be said that a telephone is an entity in its own right with attributes telephone number and location.

If we take this point of views, the employee entity set must be redefined as follows:

o The employee entity set with attribute employee name.

o The telephone entity set with attributes telephone number and location.

o The relationship set employee telephone, which denotes the association between employees

and the telephones that they have.

 The main difference between these two definitions of an employee is as follows:

o In the first case, the definition implies that every employee has one telephone number

associated with him.

o In the second case, the definition implies that all employees may have several telephone

number associated with them.

 Thus, the second definition is more general than the first one, and may more accurately reflect the real

world situation. Even if we are given that each employee has only one telephone number associated with

him, the second definition may still be more appropriate because the telephone is shared among several

employees.

 However, it is appropriate to have employees-name as an attribute of the employee entity set instead of

an entity because most of the employees have single name.

 Entity versus Relationship

 It is not always clear whether an object is best expressed by an entity set or a relationship set.

 Example: assume that, a bank loan is modeled as an entity. An alternative is to model a loan not as an

entity, but rather as a relationship between customers and branches, with loan number and amount as

descriptive attributes. Each loan is represented by a relationship between a customer and a branch.

 If every loan is held by exactly one customer and customer is associated with exactly one branch, we

may find satisfactory the design, where a loan is represented as a relationship. But, with this design, we

cannot represent conveniently a situated in which several customers hold a loan jointly. We must define

a separate relationship for each holder of the joint loan. Then, we must replicate the values for the

descriptive attributes loan-number and amount in each such relationship. Each such relationship must of

course, have the same value for the descriptive attributes loan number and amount.

 Two problems arise as a result of the replication:

o The data are stored multiple times, wasting storage space.

o Updates leave the data in an inconsistent state.

 One possible guideline is determining whether to use an entity set or a relationship set to designate a

relationship set, an action that occurs between entities. This approach can also be useful in deciding

whether certain attributes may be more appropriately expressed as relationships.

 Binary versus ternary Relationships

 It is always possible to replace a non-binary (n-ary, for n>2) relationship set by a number of distinct

binary relationship sets.

 Example: for simplicity, consider the abstract ternary (n=3) relationship set R, relating entity sets A, B,

C. We replace the relationship set R by an entity set E, and create three relationship sets:

* RA, relating E and A

* RB, relating E and B

* RC, relating E and C

 If the relationship set R has any attributes, these are assigned to entity set E; otherwise, a special

identifying attribute is created for E. For each relationship (ai, bi, ci) in the relationship set R, we create a

new entity e; in the entity set E.

 Then, in each of the three new relationship sets, we insert a relationship as follows:

 * (ei, ai) in RA

 * (ei, bi) in RB

 * (ei, ci) in RC

 We can generalize this process in a straight forward manner to n-ary relationship sets. Thus,

conceptually, we can restrict the E-R model to include only binary relationship sets.

 Aggregation versus Ternary Relationships

 The choice between using aggregation or a ternary relationship is mainly determined by the existence of

a relationship that relates a relationship set to an entity set. The choice may also be guided by certain

integrity constraints that we want to express.

 Example: consider the constraint that each sponsorship be monitored by at most one employee. We can

express this constraint in terms of the sponsors relationship set. On the other hand, we can easily express

the constraint by drawing an arrow from the aggregated relationship sponsors to the relationship

Monitors. Thus, the presence of such a constraint servers as another reason for using aggregation rather

than a ternary relationship set.

1.14 Conceptual Design for Large Database

 Designing database for large organization takes efforts of more than a single designer. It

diagrammatically represents the complete database and enables the user who provides inputs to database,

to understand the complete functionality of database.

 Large databases are modeled in two methodologies.

o The requirements of all the users are collected. The conflicting requirements are resolved and a

final conceptual view is generated to satisfy the requirements of all users.

o In the other method, the user provides his requirements; the designer generates a conceptual view

for the requirements. Likewise all the conceptual views from all user requirements are generated

and a comprehensive conceptual view that satisfies all the requirements is generated.

CASE STUDY

How to Draw ER Diagram ??

We have read all the basic terms of E-R Diagram. Now, let's understand how to draw E-R diagram? In ER

Model, objects of similar structures are collected into an entity set. The relationships between an entity sets

is represented by a named E-R relationship, which may be (one-to-one, one-to-many, many-to-one,
many-to-many), which maps one entity set to another entity set. A General ER Diagram is shown as-

In Figure, there are two entities ENTITY-1 and ENTITY-2 having attributes (Atr11, Atr12, ... Atr1m) and

(Atr21, Atr22, ... Atr2n) respectively, connected via many to many relationship (M:N). The attributes of

RELATIONSHIP are (AtrR1, AtrR2, ... AtrRO).

Steps - How to Draw ER Diagram -

1. Identify all the entities of the given problem

2. Identify all the attributes of the entities identified in step 1.

3. Identify the Primary Keys of entities identified in Step 1.

4. Identify the Attribute Types of attributes identified in step 2

5. Identify relationship between the entities and constraints on the entities and implement them.

Need of ER Diagram -

The ER Diagrams are useful in representing the relationship among entities. It helps to show basic data

structures in a way that different people can understand. Many types of people are involved in the database

environment, including programmers, designers, managers and end users. But not all of these people work

with database and might not be as skilled as others to understand the making of a software or a program etc,

so, a conceptual model like the ERD helps show the design to many different people in a way they can all

understand.

http://www.edugrabs.com/wp-content/uploads/2015/07/HOW-TO-MAKE-ERD.bmp

Example of drawing ER Diagram -

How to draw E-R diagram of a company database if the following requirements are given : Question : Make an
ER Diagram for the company database with the following description :

1. The company is organized into departments. Each department has a unique name and a unique
number. A department may have several locations.

2. A department controls a number of projects, each of which has a unique name, a unique number and a
single location.

3. We store each employee's name, social security number, address and salary. An employee is assigned to
one department but may work on several projects, which are not necessarily controlled by the same
departments.

4. We want to keep track of the departments of each employee for insurance purposes. We keep each
dependent's name, age and relationship to the employee.

Answer :

Step 1 : Identifies Entities of the given problem.

Entities :

1. DEPARTMENT (From 1st Point)

2. PROJECT (From 2nd Point)

3. EMPLOYEE (From 3rd Point)

4. DEPENDENT (From 4th Point)

Step 2 : Identify the attributes of the above entities.

Attributes :

1. DEPARTMENT : Name, Number, Location;

2. PROJECT : Name, Number, Location;

3. EMPLOYEE : SSN, Name, Address, Salary

4. DEPENDENT : Name, Age, Relationship

Step 3 : Identify the Primary Keys of all entities identified in Step 1.

Primary Keys :

1. DEPARTMENT : Name, Number, Location; (Unique Name and Unique Number)

2. PROJECT : Name, Number, Location; (Unique Name and Unique Number)

3. EMPLOYEE : SSN, Name, Address, Salary (Since, Social Security Number will be Unique, so SSN

is selected as primary Key)

4. DEPENDENT : Name, Age, Relationship (No Unique Attribute to identify DEPENDENT entity.

So, It is referred as a Weak Entity)

Step 4: Identify the Attribute Types -

Attributes Types :

1. Location Attribute of DEPARTMENT entity :

 Multi valued Attribute (Since there are several locations)

2. Name Attribute of EMPLOYEE entity :

 Composite Attribute (since a name consists of first name, middle name and last name)

3. Address Attribute of EMPLOYEE entity :

 Composite Attribute (Address consists of H.no, Street, City, State, Country)

Step 5 : Identify the Relationships and relationships attributes between the entities.

Relationships and their Attributes :

Relationship Name Entities Name having Attributes

 relationships among them

1. Works_For EMPLOYEE and DEPARTMENT -

2. Control DEPARTMENT and PROJECT -

3. Works_On EMPLOYEE and PROJECT Hours

4. Dependents_Of EMPLOYEE and DEPENDENT -

Step 6: Identify the constraints on the entities.

Cardinality Constraints :

Relationship Cardinality Reason

1. Works_For N:1 Since N employees Works_For a Department.

2. Works_On M:N Since different employees works on different

 projects.

3. Control 1:N Since a department Controls a number of projects.

4. Dependents_Of 1:N Since each Dependents has name, age and

 relationship to the employee.

Implementation of ER Diagram of the given problem on the basis of above steps :

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✣

✤✦✥★✧✂✩✫✪✠✬✂✭✫✮✯✩✫✧✱✰✲✧ ✳✴✥★✵✷✶★✩

✸✺✹✼✻✾✽❀✿ ❁✠❂✱❃✾❄✾❅❆✻✾❂✂✿❈❇

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ❉

✤✦✥★✧✂✩✫✪✠✬✂✭✫✮✯✩✫✧❋❊❍●✯✥★✶★■❑❏✯✩✫✮▲✳▼●✯✩◆✳✴✥★❖

❖ P✷◗★❘✂❙✢❚❱❯ ❲✌❳★❨◆◗★❲✌❨◆❘✢❩ ❬ ❇❪❭ ❭ ❫❵❴❜❛❝✻✾❞✼❡ ✽❀❢❀❭ ✻◆✿ ❡ ❫❵❞✴✻✾❞✼❣❤❂✂❁✠✿ ❂✂❡ ❁✠✐★✻✾❭❫❵❥✼❣❆✻✾✿ ✻❱❥ ❂✂❫★❛❦✻❱❣❆✻✾✿ ✻✾❧★✻✾♠♥❁❀♦
❖ ♣ ❁✠❭ ✻✾✿ ❡ ❫❵❞✼✻✾❭❵❛q❫❵❣❆❁✠❭❵♠♥❢❀✽❀✽❀❫❵❂✛✿ ♠r♠♥❡ ❛❝✽❀❭ ❁✾❄✾✽❀❫❵❴✴❁✠❂✂❥ ❢❀❭❵s❪t❆♠❵✉
✈❪✇✏① ② ③⑤④✾⑥✺⑦ ③⑤② ⑧❋⑨✌⑩✏⑦ ③⑤❶❷④✾❸◆⑨✌① ❹ ③⑤④❻❺⑤⑨✌❼✔❽✛❸❱③⑤④❻⑩ ③✏⑥⑤❹ ❾✢❿
✈❪➀r⑩ ⑩ ③⑤➁❻❼✼⑦ ③⑤②★⑧❱❶❷❾✢➂❻③⑤➃◆① ❹ ⑧❋❹ ➄♥⑨✌① ❹ ③⑤④✾❿

❖

s❪❢❀❁✠❂✂➅✯t❆✻✾❞✼➆★❢❀✻◆➆★❁✠♠▲➇ ➈✴✽❀❂✂❫★➆★❂✂✻✾❛q❛❝❡ ❞✼➆✯❭ ✻✾❞✼➆★❢❀✻✾➆★❁✠♠❵➉
✈❪➊r➋❷❼✼④✾③⑤①✾❽✛➌✌➃◆❽✛❾✢① ❽✛❸❱① ③▲❺✠❽❆➍✌➎❷❶❷② ❹ ④✾⑥✺❾✢③⑤⑧❋➃◆⑩ ❽✂① ❽✛➏✌❿
✈❪➊r➋❷❼✼④✾③⑤①✾❹ ④✾① ❽✛④✾❸❷❽✛❸❱① ③▲❺✠❽❆❶❷❼✔❽✛❸➐⑦ ③⑤②★❾✢③⑤⑧❋➃◆⑩ ❽✛➌✷❾✢⑨✌⑩ ❾✢❶❷⑩ ⑨✌① ❹ ③⑤④✾❼✔❿
✈❪➊r➋❷❼✼❼✟❶❷➃◆➃◆③⑤② ①✾❽✛⑨✌❼✔➑✠➒♥❽✛⑦ ⑦ ❹ ❾✢❹ ❽✛④✾①✾⑨✌❾✢❾✢❽✛❼✔❼❈① ③▲⑩ ⑨✌② ⑥✠❽✫❸❷⑨✌① ⑨✷❼✔❽✛① ❼✟❿

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ➓

➔✯✭✫✶★→❍✩✫✧❋✤✦✥★✧✂✩✫✪✠✬✂✭✫✮✯✩✫✧❋❊❍●✯✥★✶★■❑❏✯✩✫✮▲✳▼●✯✩◆✳✴✥★❖

➣ ❴✴❫↔❛❝✻✾✿ ✹✼❁✠❛q✻✾✿ ❡ ↕✌✻✾❭★s❪❢❀❁✠❂✂➅✯t❆✻✾❞✼➆★❢❆✻◆➆★❁✠♠r❥ ❫❵❂✂❛❦✿ ✹✼❁
❧★✻✾♠♥❡ ♠r❥ ❫❵❂❋➙✢❂✂❁✠✻✾❭✛➛✫❭ ✻✾❞✼➆★❢❀✻✾➆★❁✠♠↔➜ ❁❀♦ ➆r♦✢➝❵s❪t❆➞ ❄✾✻✾❞✼❣❤❥ ❫❵❂
❡ ❛❝✽❀❭ ❁✠❛❝❁✠❞✼✿ ✻✾✿ ❡ ❫❵❞✺✉

❶ ➟✷❘✢❯ ❲✌➠ ➡ ➢✏❳★❲✌❯❷➤❻❯ ❨✾❘✂➥⑤❙✢❲ ✉✱➦➧❫❵❂✂❁➐❫❵✽❀❁✠❂✂✻✾✿ ❡ ❫★❞✼✻✾❭ ❄✾✐★❁✠❂✂➅❢❀♠♥❁✠❥ ❢❀❭❵❥ ❫❵❂✱❂✂❁✠✽❀❂✂❁✠♠♥❁✠❞✼✿ ❡ ❞✼➆✯❁✠➨◆❁✠↕✌❢❀✿ ❡ ❫❵❞✴✽❀❭ ✻✾❞✼♠❵♦
❷ ➟✷❘✢❯ ❲✌➠ ➡ ➢✏❳★❲✌❯❷➩r❲✌❯ ➫✛◗★❯ ◗★❩ ✉qt❆❁✠✿ ♠r❢❀♠♥❁✠❂✂♠r❣❆❁✠♠♥↕✌❂✂❡ ❧★❁➐❴✴✹✼✻✾✿✿ ✹✼❁✠➅✯❴✴✻✾❞✼✿ ❄✾❂✂✻✾✿ ✹✼❁✠❂✱✿ ✹✼✻✾❞✴✹✼❫❵❴❑✿ ❫✯↕✌❫★❛❝✽❀❢❀✿ ❁➐❡ ✿✌♦
➜ ➭✴❫❵❞✼➯ ❫❵✽❀❁✠❂✂✻✾✿ ❡ ❫❵❞✼✻✾❭ ❄✾➲ ❘✢➫✛❯ ❲✏❙✢❲✌➠ ➡ ➳◆❘ ♦ ➞

☛ ➵✷❳ ➲ ❘✂❙✂❩✢➠ ❲✌❳ ➲ ➡ ❳★❨❋➤❻❯ ❨◆❘✂➥✏❙✢❲▼➸➺➩r❲✌❯ ➫✛◗★❯ ◗★❩✱➡ ❩✫➻✏❘✢❚❱➠ ➢
☛ ◗★❳ ➲ ❘✂❙✂❩✢➠ ❲✌❳ ➲ ➡ ❳❈❨❱➼rP✷➽★➾◆➚✏◗❈❘✂❙✢❚❱➪◆❙✢➢✌➫✛❘✂❩✢❩✢➡ ❳★❨❆➶ �✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ➹

➘❝✶★✥★✧✂✬✂→❍✬✂✮✯✩✫✶★✬✂✥★❖

❖

❇➷➴★❢❀❁✠❂✂➅✯❡ ♠r✻✾✽❀✽❀❭ ❡ ❁✠❣❤✿ ❫ ❙✂❘✢❯ ❲✌➠ ➡ ➢✌❳✯➡ ❳❈❩✢➠ ❲✏❳★➫✛❘✢❩ ❄◆✻✾❞✼❣❤✿ ✹✼❁❂✂❁✠♠♥❢❀❭ ✿❈❫❵❥✼✻❱➴★❢❀❁✠❂✂➅✯❡ ♠r✻✾❭ ♠♥❫✯✻❱❂✂❁✠❭ ✻✾✿ ❡ ❫❵❞➬❡ ❞✼♠♥✿ ✻✾❞✼↕✌❁❀♦
✈❋➮✠➱✟✃✌❐ ❒r❮✢❰❈③✏⑦◆❹ ④✾➃◆❶❷①✾② ❽✛⑩ ⑨✌① ❹ ③⑤④✾❼❈⑦ ③⑤②★⑨✱Ï✠❶❷❽✛② ➑▲⑨♥② ❽✫⑦ ❹ ➌✌❽✛❸❱Ð ❺✠❶❷①Ï✠❶❷❽✛② ➑✺➁❻❹ ⑩ ⑩⑤② ❶❷④❻② ❽✛⑥⑤⑨✌② ❸❷⑩ ❽✛❼✔❼❈③⑤⑦◆❹ ④✾❼✔① ⑨✌④✾❾✢❽✛Ñ Ò
✈❪➎❷➂✾❽✫❼✔❾✢➂✾❽✛⑧❋⑨✷⑦ ③⑤②★① ➂✾❽❆Ó ❐ ❰ Ô✠Õ Ö❷③✏⑦✾⑨✷⑥✠❹ ×✠❽✛④❻Ï⑤❶◆❽✛② ➑✺❹ ❼✼⑨✌⑩ ❼✔③⑦ ❹ ➌✌❽✛❸❷Ñ✏Ør❽✛① ❽✛② ⑧❋❹ ④✾❽✛❸❱❺✠➑▲❸❷❽✛⑦ ❹ ④✾❹ ① ❹ ③⑤④❻③⑤⑦◆Ï⑤❶❷❽✛② ➑✺⑩ ⑨✌④✾⑥⑤❶◆⑨✌⑥✠❽❾✢③⑤④✾❼✔① ② ❶❷❾✢① ❼✔❿

❖

❅❀❫❵♠♥❡ ✿ ❡ ❫❵❞✼✻✾❭★✐★♠❵♦✢❞✼✻✾❛❝❁✠❣❆➯ ❥ ❡ ❁✠❭ ❣❤❞✼❫❵✿ ✻✾✿ ❡ ❫★❞✺✉
✈❪Ù❷③⑤❼✔❹ ① ❹ ③⑤④✾⑨✌⑩⑤④✾③⑤① ⑨✌① ❹ ③⑤④❻❽✛⑨✌❼✔❹ ❽✛②❵⑦ ③⑤②★⑦ ③⑤② ⑧❱⑨✌⑩⑤❸❷❽✂⑦ ❹ ④✾❹ ① ❹ ③⑤④✾❼✔➒④✾⑨✌⑧❋❽✛❸❷Ú ⑦ ❹ ❽✛⑩ ❸❱④✾③⑤① ⑨✌① ❹ ③⑤④❻⑧❋③⑤② ❽✫② ❽✛⑨✌❸◆⑨✌❺✠⑩ ❽✂❿
✈❪Û❷③⑤① ➂❻❶❷❼✔❽✛❸❱❹ ④❻✇✏➊✷➋

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ Ü

Ý❝Þ❻✩✫→❍ß❻✧✂✥áà✠✮✯❖★✪✠✩❆✮✯â✼✥★❖

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

ã✫ä

å ä

å✠æ

❖ ➍✌✇✏⑨✌❹ ⑩ ③⑤② ❼✟➏✱⑨✌④✾❸➐➍✌ç❈❽✛❼✔❽✛② ×✠❽✛❼✔➏② ❽✛⑩ ⑨✌① ❹ ③⑤④✾❼✼⑦ ③⑤②★③⑤❶❷②★❽✛➌♥⑨✌⑧❋➃◆⑩ ❽✛❼✔❿
❖ è ❽✛é ⑩ ⑩⑤❶❷❼✔❽✫➃◆③⑤❼✔❹ ① ❹ ③⑤④✾⑨✌⑩⑤③⑤②④✾⑨✌⑧❋❽✛❸❱⑦ ❹ ❽✛⑩ ❸➐④✾③⑤① ⑨✌① ❹ ③⑤④✾➒⑨✌❼✔❼✟❶❷⑧❋❽✫① ➂✾⑨✌①✾④✠⑨✌⑧❋❽✛❼✼③✏⑦◆⑦ ❹ ❽✛⑩ ❸◆❼❹ ④❻Ï✠❶❷❽✛② ➑✺② ❽✛❼✔❶❷⑩ ① ❼❈⑨✌② ❽ê ❹ ④✾➂✾❽✛② ❹ ① ❽✛❸❷é✏⑦ ② ③⑤⑧ë④✾⑨✌⑧❋❽✛❼✼③⑤⑦⑦ ❹ ❽✛⑩ ❸❷❼✼❹ ④❻Ï⑤❶❷❽✛② ➑✺❹ ④✾➃◆❶❷①② ❽✛⑩ ⑨✌① ❹ ③⑤④✾❼✔❿

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ì

✤✦✥★✧✂✩✫✪✠✬✂✭✫✮✯✩✫✧✱✰✲✧ ✳✴✥★✵✷✶★✩

❖ í ✻✾♠♥❡ ↕▲❫❵✽❀❁✠❂✂✻✾✿ ❡ ❫❵❞✼♠❵✉✈❋➮✠❐ Õ ❐ ➱✟Ö î ï✢ð ÐñÒò✇✏❽✛⑩ ❽✛❾✢① ❼✼⑨✱❼✟❶❷❺✠❼✔❽✛①✾③✏⑦◆② ③⑤➁❻❼❈⑦ ② ③⑤⑧ë② ❽✛⑩ ⑨✌① ❹ ③⑤④✾❿
✈❋ó❷Ó ï ô✟❐ ➱✟Ö î ï✢ð ÐñÒáØr❽✛⑩ ❽✛① ❽✛❼✼❶❷④✾➁✺⑨✌④✾① ❽✛❸❱❾✢③⑤⑩ ❶❷⑧❋④✾❼✼⑦ ② ③⑤⑧õ② ❽✛⑩ ⑨✌① ❹ ③⑤④✾❿
✈❋ö❈Ó ï✢❰ ❰ ÷ ø✌Ó ï✔ù✌Ô⑤➱✟Ö ÐñÒ❻➀r⑩ ⑩ ③⑤➁❻❼❈❶◆❼✼① ③▲❾✢③⑤⑧❋❺✠❹ ④✾❽✫① ➁❻③▲② ❽✛⑩ ⑨✌① ❹ ③⑤④✾❼✔❿
✈❋➮✠❐ Ö ÷ ù✌î ú ú✟❐ Ó ❐ ð✠➱✟❐ ÐñÒ❻➎◆❶❷➃◆⑩ ❽✛❼✼❹ ④❻② ❽✛⑩ ④✾❿✌û♥➒♥❺✠❶◆①✾④✾③⑤①✾❹ ④❻② ❽✛⑩ ④✾❿✌ü✌❿
✈❝ý★ð✠î ï✢ð ÐñÒ❻➎❷❶❷➃◆⑩ ❽✛❼❈❹ ④❻② ❽✛⑩ ④✾❿✌û✱⑨✌④✾❸➐❹ ④❻② ❽✛⑩ ④✾❿✌ü✌❿

❖

❇❪❣❆❣❆❡ ✿ ❡ ❫❵❞✼✻✾❭❵❫❵✽❀❁✠❂✂✻✾✿ ❡ ❫❵❞✼♠❵✉
✈❪þ ④✾① ❽✛② ❼✔❽✛❾✢① ❹ ③⑤④✾➒ ô✟ï✢î ð ➒✌❸❷❹ ×✠❹ ❼✔❹ ③⑤④✾➒✌② ❽✛④✾⑨✌⑧❋❹ ④✾⑥✠ÿ✁�❻③⑤①✾❽✛❼✔❼✔❽✛④✾① ❹ ⑨✌⑩ ➒♥❺✠❶❷①Ð ×✠❽✛② ➑✠Ñ Ò✾❶❷❼✔❽✛⑦ ❶❷⑩ ❿

❖

➝❷❡ ❞✼↕✌❁➐❁✠✻✾↕✌✹✴❫❵✽❀❁✠❂✂✻✾✿ ❡ ❫❵❞✴❂✂❁✠✿ ❢❀❂✂❞✼♠r✻❱❂✂❁✠❭ ✻✾✿ ❡ ❫❵❞✼❄✾❫❵✽❀❁✠❂✂✻✾✿ ❡ ❫❵❞✼♠
↕✌✻✾❞✴❧★❁ ➫✛➢✄✂❪➪✾➢✌❩✂❘ ➲❆➉❷➜ ❇❪❭ ➆★❁✠❧★❂✂✻❱❡ ♠↔➙✂↕✌❭ ❫❵♠✌❁✠❣➐➛✾♦ ➞

σ
π

−
×

Υ

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ☎

➘❝✶★✭✝✆◆✥★â✼✪✠✬✂✭✫✮ ✞✠✟☛✡✄☞✍✌ ✎✏✡✒✑ ✓ ✟☛✔✕✗✖✙✘✙✘☛✕ ✚✛ ✖✙✜✗✜ ✌✢✎ ✣✔ ✖✙✘✙✘☛✕ ✤
✎ ✖ ✞✠✑ ✕ ✥✒✦

π
sname rating

S
,

()2

✧✗★✙✩✪✗✫✭✬ ✮✫✗✫✭✬ ✫
πage S()2

❖ Ør❽✛⑩ ❽✛① ❽✛❼✼⑨✌① ① ② ❹ ❺✠❶❷① ❽✛❼❈① ➂✾⑨✌①✠⑨✌② ❽✫④✾③⑤①✾❹ ④ø✌Ó ï ô✟❐ ➱✟Ö î ï✢ð▲Õ î ❰ Ö ❿
❖ ➮✠➱✟✃✌❐ ❒r❮❆③⑤⑦✾② ❽✛❼✔❶❷⑩ ①✾❾✢③⑤④✾① ⑨✌❹ ④✾❼❈❽✛➌✌⑨✌❾✢① ⑩ ➑① ➂✾❽✫⑦ ❹ ❽✛⑩ ❸❷❼✼❹ ④❻① ➂✾❽✫➃◆② ③✰✯ ❽✛❾✢① ❹ ③⑤④❻⑩ ❹ ❼✔① ➒➁❻❹ ① ➂❻① ➂✾❽✫❼✔⑨✌⑧❋❽✫④✾⑨✌⑧❋❽✛❼❈① ➂✾⑨✌①✾① ➂✾❽✛➑➂✾⑨✌❸❱❹ ④❻① ➂✾❽✫Ð ③⑤④✾⑩ ➑⑤Ò◆❹ ④✾➃◆❶❷①✾② ❽✛⑩ ⑨✌① ❹ ③⑤④✾❿
❖ Ù❷② ③✰✯ ❽✛❾✢① ❹ ③⑤④❻③⑤➃◆❽✛② ⑨✌① ③⑤②★➂✾⑨✌❼✼① ③❽✛⑩ ❹ ⑧❋❹ ④✾⑨✌① ❽❆ù✌Ô⑤ø✌Õ î ➱✟❮✢Ö ❐ ❰✟Ñ✷Ð è ➂✾➑✲✱✠✱✔Ò✈✳�❻③⑤① ❽✛ÿ✌② ❽✛⑨✌⑩⑤❼✔➑⑤❼✔① ❽✛⑧❋❼✼① ➑✠➃◆❹ ❾✢⑨✌⑩ ⑩ ➑❸❷③⑤④✾é ①✾❸❷③▲❸❷❶❷➃◆⑩ ❹ ❾✢⑨✌① ❽✫❽✛⑩ ❹ ⑧❋❹ ④✠⑨✌① ❹ ③⑤④❶❷④✾⑩ ❽✛❼✔❼✼① ➂✾❽✫❶◆❼✔❽✛②★❽✛➌✌➃◆⑩ ❹ ❾✢❹ ① ⑩ ➑✺⑨✌❼✵✴✠❼⑦ ③⑤②★❹ ① ❿✱Ð è ➂✾➑✺④✾③⑤① ✱✢Ò

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✶

✷ ✥★✧✂✥★â✼✪✠✬✂✭✫✮

σ
rating

S
>8

2()

✸✢✹ ✺ ✸✢✻✽✼✗✾❀✿ ❁❂✼✝❃ ✹ ✻❅❄ ✼✝❄❆✿❇✗❈ ❉❆❊●❋●❋●❉ ❍ ■✝❏✭❑ ▲❏✗❈ ❁ ❊ ✸✢❃ ❉ ▼❂▲ ■✝❏✭❑ ▲

◆✄❖❅P✗◗❀❘ ❙❂P✗❚ ❯ ❖✽❱
❲❆❳✭❨✽❨●❲ ❩
❙ ❳ ◆✢❚ ❲ ❬❂❭

π σ
sname rating rating

S
,

(())
>8

2

❖ ✇✏❽✛⑩ ❽✛❾✢① ❼✼② ③⑤➁❻❼✼① ➂✾⑨✌①✾❼✟⑨✌① ❹ ❼✔⑦ ➑❰ ❐ Õ ❐ ➱✟Ö î ï✢ð✺➱✟ï✔ð✠ù✌î Ö î ï✢ð✾❿
❖ �❻③▲❸❷❶❷➃◆⑩ ❹ ❾✔⑨✌① ❽✛❼✼❹ ④❻② ❽✛❼✔❶❷⑩ ① ÑÐ è ➂✾➑✲✱✢Ò
❖ ➮✠➱✟✃✌❐ ❒r❮❆③⑤⑦✾② ❽✛❼✔❶❷⑩ ①❹ ❸❷❽✛④✾① ❹ ❾✢⑨✌⑩⑤① ③▲❼✔❾✢➂✾❽✛⑧❋⑨✷③✏⑦Ð ③⑤④✾⑩ ➑✠Ò◆❹ ④✾➃◆❶❷①✾② ❽✛⑩ ⑨✌① ❹ ③⑤④✾❿
❖ ❪ ❐ ❰ Ô✠Õ Ö❷② ❽✛⑩ ⑨✌① ❹ ③⑤④❻❾✔⑨✌④❻❺✠❽① ➂✾❽❆î ð✠ø✌Ô✠Ö◆⑦ ③⑤②❵⑨✌④✾③⑤① ➂✾❽✛②② ❽✛⑩ ⑨✌① ❹ ③⑤④✾⑨✌⑩⑤⑨✌⑩ ⑥✠❽✂❺✠② ⑨③⑤➃◆❽✛② ⑨✌① ❹ ③⑤④✾ÑrÐ ❫✷ø✌❐ Ó ❮✢Ö ï✢Ó➱✟ï✢❒rø✌ï✢❰ î Ö î ï✢ð✲❴ Ò

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ❵

❛ ✮✯✬✂✭✫✮❝❜❻à⑤✮✯✪✠✥★✶★❖★✥★â✼✪✠✬✂✭✫✮❝❜ ✷ ✥❵✪✲❞✰❡❍✬ ❢❂❢✫✥★✶★✥★✮✯â✼✥

❖ ➀r⑩ ⑩⑤③⑤⑦◆① ➂✾❽✛❼✔❽✫③⑤➃◆❽✛② ⑨✌① ❹ ③⑤④✾❼✼① ⑨✄✴✠❽① ➁❻③▲❹ ④✾➃◆❶❷①✾② ❽✛⑩ ⑨✌① ❹ ③⑤④✾❼✔➒✌➁❻➂✾❹ ❾✢➂⑧❋❶❷❼✔①✠❺✠❽❆Ô✠ð✠î ï✔ð✠÷ ➱✟ï✔❒rø✌❮✔Ö î ❣✂Õ ❐ ÿ
✈❪✇✏⑨✌⑧❋❽✫④✾❶❷⑧❱❺✠❽✛②★③⑤⑦✾⑦ ❹ ❽✛⑩ ❸❷❼✟❿
✈ ê ❤ ③⑤② ② ❽✛❼✔➃◆③⑤④✾❸❷❹ ④✾⑥✠é✏⑦ ❹ ❽✛⑩ ❸❷❼➂✾⑨✌×✠❽✫① ➂✾❽✫❼✔⑨✌⑧❋❽❆① ➑✠➃◆❽✛❿

❖ è ➂✾⑨✌①✾❹ ❼✼① ➂✾❽❆❰ ➱ ✃✌❐ ❒r❮❆③⑤⑦✾② ❽✛❼✔❶❷⑩ ① ✱

✐❦❥ ❧ ✐❂♠✙♥✰♦q♣ r✵♥✰s ❥ ♠✙t ♥✰t✝♣✉✰✉ ❧❅✈❆✐❂s ❥ ♠ ✇ ①✰②✰③ ④⑤✰⑥ ⑦ ✈❅⑧✝⑧☛♣✄r ⑨ ②✰②✰③ ②②✰⑨ r✵✈❅✐❂s ⑩ ⑥ ④ ⑤ ②✰③ ④①✰① t✝✈❅❶❆❶❆⑩ ② ⑤ ②✰③ ④✉ ⑨ ⑩✝✈❅❶❆❶❆⑩ ❷ ⑤ ②✰③ ④

❸❂❹ ❺ ❸❂❻☛❼✰❽❝❾ ❿✵❼✒➀ ❹ ❻☛➁ ❼✒➁✝❾➂✰➃ ➄ ➅✙➆✝➆ ❾✄❿ ➇ ➈✒➈✰➉ ➈➈✰➇ ❿ ➅ ❸❂➀ ➊ ➃✰➋ ➂ ➈✰➉ ➋

S S1 2∪

S S1 2∩

➌✠➍ ➎ ➌❂➏☛➐✒➑✍➒ ➓✏➐✰➔ ➍ ➏✝→ ➐✒→✗➒➣✒➣ ➎❆↔✙➌❂➔ ➍ ➏ ↕ ➙✒➛✒➜ ➝
S S1 2− �✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✣ ➞

➟ ✶★✭✫❖★❖❆❞✠➘❝✶★✭✁➠❻●✯â✼✪
❖ ➡ ✻✾↕✌✹✴❂✂❫❵❴❑❫❵❥✼➝➤➢✫❡ ♠▲✽❀✻✾❡ ❂✂❁✠❣❤❴✴❡ ✿ ✹✴❁✠✻✾↕✌✹✴❂✂❫❵❴❑❫❵❥ ♣ ➢✾♦
❖ ➟✷❘✂❩✢◗★❯ ➠✼❩✢➫❦➥◆❘✠✂❪❲ ✹✼✻✾♠r❫❵❞✼❁➐❥ ❡ ❁✠❭ ❣❤✽❀❁✠❂✱❥ ❡ ❁⑤❭ ❣❤❫❵❥✼➝➤➢✫✻✾❞✼❣ ♣ ➢✂❄❴✴❡ ✿ ✹✴❥ ❡ ❁✠❭ ❣❤❞✼✻✾❛❝❁✠♠➧➦ ❡ ❞✼✹✼❁✠❂✢❡ ✿ ❁✠❣✭➨❷❡ ❥✼✽❀❫❵♠♥♠♥❡ ❧★❭ ❁❀♦
➩ ➩✷➢✌❳✄➫✂❯ ➡ ➫✛➠ ✉ í ❫❵✿ ✹✴➝➤➢✱✻✾❞✼❣ ♣ ➢✱✹✼✻✾✐★❁➐✻❱❥ ❡ ❁✠❭ ❣❤↕✌✻✾❭ ❭ ❁✠❣ ❩✢➡ ➲❆♦

ρ ((,),)C sid sid S R1 1 5 2 1 1→ → ×

➭ ➯ ➲ ➳❦➵ ➯ ➸✒➺ ➻➤➼ ➽ ➺✏➾ ➲ ➸✢➚ ➺ ➚❦➼ ➭ ➯ ➲ ➳❦➵ ➪✢➲ ➳ ➳✢➺ ➶➹✏➹ ➳❦➘✄➯ ➾ ➲ ➸➷➴➮➬✵➱❂✃ ❐ ➹✵➹❮❒ ❐ ❒❰❒ ❐❦Ï ❒ ❐❦Ï✠Ð✵Ñ➹✏➹ ➳❦➘✄➯ ➾ ➲ ➸➷➴➮➬✵➱❂✃ ❐Ò➱✠Ó ❒ ❐✏Ô ❒✏❒ Ï ❒ ➹ Ï✠Ð✵ÑÔ ❒ÖÕ ➘❂➪❂➪✢➼✏➽×ÓØ➱✏➱❂✃ ➱ ➹✵➹❮❒ ❐ ❒❰❒ ❐❦Ï ❒ ❐❦Ï✠Ð✵ÑÔ ❒ÖÕ ➘❂➪❂➪✢➼✏➽×ÓØ➱✏➱❂✃ ➱Ò➱✠Ó ❒ ❐✏Ô ❒✏❒ Ï ❒ ➹ Ï✠Ð✵Ñ➱✵ÓÙ➽ ➘✢➯ ➾ ➶ ❒ ❐ÚÔ✏➱❂✃ ❐ ➹✵➹❮❒ ❐ ❒❰❒ ❐❦Ï ❒ ❐❦Ï✠Ð✵Ñ➱✵ÓÙ➽ ➘✢➯ ➾ ➶ ❒ ❐ÚÔ✏➱❂✃ ❐Ò➱✠Ó ❒ ❐✏Ô ❒✏❒ Ï ❒ ➹ Ï✠Ð✵Ñ
☛ ❪ ❐ ð✠❮✢❒rî ð✰Û✷ï✔ø✌❐ Ó ❮✔Ö ï✢Ó ÿ

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✣ ✣

Ü❀✭✫✬✂✮✯❖
❖ ➩✷➢✌❳ ➲ ➡ ➠ ➡ ➢✌❳qÝ ➢✌➡ ❳ ✉

❖ ➟✷❘✂❩✢◗★❯ ➠✼❩✢➫❦➥◆❘✠✂❪❲ ♠♥✻✾❛❝❁➐✻✾♠▲✿ ✹✼✻✾✿❈❫❵❥❀↕✌❂✂❫❵♠✌♠♥➯ ✽❀❂✂❫❵❣❆❢❀↕✌✿✌♦
❖ Þ ❁✠❴✴❁✠❂✱✿ ❢❀✽❀❭ ❁✠♠r✿ ✹✼✻✾❞✴↕✌❂✂❫❵♠♥♠♥➯ ✽❀❂✂❫❵❣❆❢❀↕✏✿ ❄◆❛❝❡ ➆★✹✼✿❈❧★❁✻✾❧★❭ ❁➐✿ ❫↔↕✌❫❵❛q✽❀❢❀✿ ❁❱❛❝❫❵❂✂❁➐❁✠❥ ❥ ❡ ↕✌❡ ❁✠❞✼✿ ❭ ➅
❖

➝❷❫❵❛❝❁✠✿ ❡ ❛❝❁✠♠r↕✌✻✾❭ ❭ ❁✠❣❤✻ ➠ ➥◆❘✢➠ ❲✄ß à✂➢✌➡ ❳ ♦

R c S c R S>< = ×σ ()

á â❦ã ä✽å â❦æ❅ç✲èêé ë✠ç✲ì ã æ❆í ç✲í✙é á â❦ã ä✽å î✙ã ä ä✽ç✲ï
ð✲ð ä✽ñ✽â❦ì ã æ ò ó✲ô✲õ ö ô✲÷ ø✲ö✲ù ø✲ø●ú✰ø ð ú✰û✲üù✲ø ý ñ✽î✙î☛é✰ë ÷ ô✲ô✲õ ô ô✲÷ ø✲ö✲ù ø✲ø●ú✰ø ð ú✰û✲ü

S R
S sid R sid

1 1
1 1

><
. .<

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✣ ❉

Ü❀✭✫✬✂✮✯❖

❖ þ❆➚✏◗★➡ ß Ý ➢✌➡ ❳ ✉✫❇ ♠♥✽❀❁✠↕✌❡ ✻✾❭❵↕✌✻✾♠♥❁➐❫❵❥❀↕✌❫❵❞✼❣❆❡ ✿ ❡ ❫❵❞ ÿ ❫❵❡ ❞✴❴✴✹✼❁✠❂✂❁
✿ ✹✼❁➐↕✌❫❵❞✼❣❆❡ ✿ ❡ ❫❵❞ ➫ ↕✌❫❵❞✼✿ ✻✾❡ ❞✼♠r❫❵❞✼❭ ➅ ✁✄✂✆☎✞✝✠✟ ✡ ☛☞✡ ✁✄✌✎✍

❖ ➟✷❘✂❩✢◗★❯ ➠✼❩✢➫❦➥◆❘✠✂❪❲ ♠♥❡ ❛❝❡ ❭ ✻✾❂✱✿ ❫✯↕✌❂✂❫❵♠♥♠♥➯ ✽❀❂✂❫★❣❆❢❀↕✌✿ ❄✾❧★❢❀✿✼❫❵❞✼❭ ➅❫❵❞✼❁➐↕✌❫❵✽❀➅✯❫❵❥✼❥ ❡ ❁✠❭ ❣❆♠r❥ ❫❵❂✱❴✴✹✼❡ ↕✌✹✴❁✠➴★❢❀✻◆❭ ❡ ✿ ➅✯❡ ♠r♠♥✽❀❁✠↕✌❡ ❥ ❡ ❁✠❣➐♦
❖ ✏❪❲✌➠ ◗★❙✢❲✌❯☛Ý✟➢✌➡ ❳ ✉ ➡ ➴★❢❀❡ ÿ ❫❵❡ ❞✴❫❵❞ ❲✌❯ ❯ ↕✌❫❵❛q❛❝❫❵❞✴❥ ❡ ❁✠❭ ❣❆♠❵♦

✑✓✒ ✔ ✑✓✕✗✖✙✘✛✚ ✜☞✖✙✢ ✒ ✕✗✣ ✖✙✣✤✚ ✥✆✒ ✔ ✔✞✖✙✦
✧✙✧ ✔✩★✩✑✓✢ ✒ ✕ ✪ ✫✙✬✙✭ ✮ ✯✙✮✙✯ ✯✙✮✱✰✲✯✙✮✱✰✲✳✙✴
✬✙✵ ✜☞★✩✑✓✢ ✦ ✯✙✮ ✶✙✬✙✭ ✮ ✯✙✮✙✶ ✯✙✯✱✰✲✯ ✧ ✰✲✳✙✴

S R
sid

1 1><

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✣ ➓

❡❍✬✸✷❻✬✂❖★✬✂✭✫✮

❖

➭✴❫❵✿❈♠♥❢❀✽❀✽❆❫❵❂✂✿ ❁✠❣❤✻✾♠r✻❱✽❀❂✂❡ ❛❝❡ ✿ ❡ ✐★❁❱❫❵✽❀❁✠❂✂✻✾✿ ❫❵❂✂❄✾❧★❢❀✿✼❢❀♠♥❁✠❥ ❢❀❭❵❥ ❫❵❂
❁✠➨◆✽❀❂✂❁✠♠♥♠♥❡ ❞✼➆✯➴★❢❀❁✠❂✂❡ ❁✠♠r❭ ❡ ✹★❁❀✉

✺ ➡ ❳ ➲ ❩✢❲✌➡ ❯ ➢✌❙✂❩✼✻ ➥✾➢ ➥✾❲✏➳✾❘✱❙✂❘✢❩✂❘✢❙✂➳✾❘ ➲ ✝✠✟ ✟ ➥⑤➢✌❲✌➠ ❩ ♦
❖

t❆❁✠✿ ➤ ✹✼✻✾✐★❁✾✽❱❥ ❡ ❁✠❭ ❣❆♠♥❄❀✿❱✻✾❞✼❣ ❚❀❁❃❂ ✹✼✻✾✐❈❁➐❫❵❞✼❭ ➅✯❥ ❡ ❁✠❭ ❣ ❚ ✉➩ ➤❅❄ ❂❇❆
✈❪❹ ❿ ❽✛❿ ➒✓❈✼❉ ❊●❋☞❍✙■❃❏ ❑▼▲ ■✤◆✩❑✄❖ ❖✲P✠❏ ◗✤❘❃❖ ❙✄◆✩❚ ◆❯❑✄▲ ❖ ❍✙❱ ◆☞❲❀◆❯◗✤❋☞❳❨❏ ❳✤❑▼❏❃❩ ❍✙❱❃❬☞❭✙❬☞❪ ❫ ❫❏ ◗✤❘✤❖ ❙❴❚ ❵✤❍✲❑▼❏ ❲❀▲ ■❅❊✩❛✄❏ ❳✤❙✄❱ ❙❴▲ ◆✩❑✄■❜P✄❫❅❏ ◗❃❘✤❖ ❙❴▲ ■❅❈❞❝
✈ ❫rÓ✟ÿ✱þ ⑦◆① ➂✾❽✫❼✔❽✛①✾③✏⑦✙❡r×⑤⑨✌⑩ ❶❷❽✛❼❈Ð ❺✠③⑤⑨✌① ❼✟Ò✾⑨✌❼✔❼✔③⑤❾✢❹ ⑨♥① ❽✛❸❱➁❻❹ ① ➂❻⑨✌④❣❢r×⑤⑨✌⑩ ❶❷❽Ð ❼✔⑨✌❹ ⑩ ③⑤② Ò✾❹ ④❜❤➬❾✢③⑤④✾① ⑨✌❹ ④✾❼❈⑨✌⑩ ⑩✎❡✷×✠⑨✌⑩ ❶❷❽✛❼✼❹ ④❜✐❷➒✌① ➂✾❽❥❢r×⑤⑨✌⑩ ❶❷❽✫❹ ❼❈❹ ④❜❤✼❦ ✐❷❿

❖ ❧ ❞✴➆★❁✠❞✼❁✠❂✂✻✾❭ ❄❀✿❱✻✾❞✼❣ ❚ ↕✌✻✾❞✴❧★❁➐✻✾❞✼➅✯❭ ❡ ♠♥✿ ♠r❫❵❥✼❥ ❡ ❁✠❭ ❣❆♠ ❁✾❚ ❡ ♠r✿ ✹✼❁❭ ❡ ♠♥✿❈❫❵❥✼❥ ❡ ❁✠❭ ❣❆♠r❡ ❞ ❂ ❄✾✻✾❞✼❣♠✿ ❚ ❡ ♠r✿ ✹✼❁➐❭ ❡ ♠♥✿❈❫❵❥✼❥ ❡ ❁✠❭ ❣❆♠r❫❵❥ ➤ ♦

{ }x x y A y B| ,∃ ∈ ∀ ∈

∪ �✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✣ ➹

Ý❝Þ❻✩✫→❍ß❻✧✂✥★❖á✭❂❢❰❡❍✬✸✷❻✬✂❖★✬✂✭✫✮ ✰♦♥✤♣

q☞r✤s t✆r✤sq☞✉ t✆✉q☞✉ t✆✈q☞✉ t✆✇q☞✉ t✆①q☞✈ t✆✉q☞✈ t✆✈q☞✇ t✆✈
q☞① t✆✈
q☞① t✆①

②✤③✤④②✤⑤ ⑥✆⑦❃⑧⑥✆⑨⑥✆⑩

❶✆❷❃❸❶✆❹❶✆❺❶✆❻
❼☞❽❃❾❼☞❿❼☞➀❼☞➁❼☞➂

➃☞➄✤➅➃☞➆➃☞➇ ➈☞➉❃➊➈☞➋➌

➍❜➎ ➍✩➏
➍❜➐

➌➒➑ ➍❜➎ ➌➒➑ ➍✩➏ ➌➒➑ ➍❜➐

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✣ Ü

Ý❝Þ❻ß❻✶★✥★❖★❖★✬✂✮▲✳❑✰♦♥✤♣Ú❛ ❖★✬✂✮r✳➓♣❝✩✫❖★✬✂â→➔❍ß❻✥★✶★✩✫✪✠✭✫✶★❖

❖ ➣ ❡ ✐★❡ ♠♥❡ ❫❵❞✴❡ ♠r❞✼❫❵✿❈❁✠♠♥♠♥❁✠❞✼✿ ❡ ✻✾❭❵❫❵✽ ❁ ÿ ❢❀♠✌✿❈✻❋❢❀♠♥❁✠❥ ❢❀❭❵♠♥✹✼❫❵❂✂✿ ✹✼✻✾❞✼❣➐♦✈❪Ð ➀r⑩ ❼✔③▲① ② ❶❷❽❆③⑤⑦✗✯ ③⑤❹ ④✾❼✔➒♥❺✠❶❷①✲✯ ③⑤❹ ④✾❼✼⑨✌② ❽❆❼✔③▲❾✢③⑤⑧❱⑧❋③⑤④❻① ➂✾⑨✌①✾❼✔➑✠❼✔① ❽✛⑧❋❼❹ ⑧❋➃◆⑩ ❽✛⑧❋❽✛④✾①✗✯ ③⑤❹ ④✾❼✼❼✔➃◆❽✛❾✢❹ ⑨✌⑩ ⑩ ➑✠❿ Ò
❖ ↔ ➲ ❘✢❲ ✉ Þ ❫❵❂ ➤❅❄ ❂ ❄◆↕✌❫★❛❝✽❀❢❀✿ ❁➐✻✾❭ ❭✆✿❋✐❈✻✾❭ ❢❀❁✠♠r✿ ✹✼✻✾✿❈✻✾❂✂❁➐❞✼❫❵✿➦ ❣❆❡ ♠♥➴★❢❀✻✾❭ ❡ ❥ ❡ ❁✠❣✭➨❷❧★➅✯♠♥❫❵❛❝❁ ❚ ✐❈✻✾❭ ❢❀❁➐❡ ❞ ❂ ♦
✈↕❢r×⑤⑨✌⑩ ❶❷❽✫❹ ❼★ù✌î ❰ ➙✂Ô⑤❮✢Õ î ú✟î ❐ ùr❹ ⑦✾❺✠➑▲⑨✌① ① ⑨✌❾✢➂✾❹ ④✾⑥❣❡✷×⑤⑨✌⑩ ❶❷❽❆⑦ ② ③⑤⑧➛✐❵➒♥➁❻❽③⑤❺✠① ⑨✌❹ ④✺⑨✌④❜❢▼❡r① ❶❷➃◆⑩ ❽✫① ➂✾⑨✌①✾❹ ❼✼④✾③⑤①✾❹ ④❣❤✱❿

Ør❹ ❼✔Ï✠❶◆⑨✌⑩ ❹ ⑦ ❹ ❽✛❸❅❢r×⑤⑨✌⑩ ❶❷❽✛❼✔ÿ
➤❅❄ ❂❆❬

π πx x A B A((()))× −

π x A() − ⑨✌⑩ ⑩⑤❸❷❹ ❼✔Ï⑤❶❷⑨✌⑩ ❹ ⑦ ❹ ❽✛❸❱① ❶❷➃◆⑩ ❽✛❼
�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✣ ì

➜❨➝ ➞❃➟➠➞❃➡✼➢➥➤✄➦✾➧✸➨✾➦✄➡✼➝ ➩ ➧✼➫ ➦✛➭❜➯✞➧✼➲ ➳✎➤✛➫ ➤✄➦✎➤✗➫✄➳✲➤✄➟➠➵✓➧❃➡✼➸✗➺●➎✞➻✞➐

❖

➝❷❫❵❭ ❢❀✿ ❡ ❫❵❞ ➢✾✉
π σsname bid

serves Sailors((Re))
=103

><

❖

➝❷❫❵❭ ❢❀✿ ❡ ❫❵❞➼✽ ÿ ρ σ(, Re)Temp serves
bid

1
103=

ρ (,)Temp Temp Sailors2 1 ><

π sname Temp()2

❖

➝❷❫❵❭ ❢❀✿ ❡ ❫❵❞➼➽ ÿ π σsname bid
serves Sailors((Re))

=103
><

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✣ ☎

➜❨➝ ➞❃➟➠➞❃➡✼➢➥➤✄➦✾➧✸➨✾➦✄➡✼➝ ➩ ➧✼➫ ➦✛➭❜➯✞➧✼➲ ➳✎➤✛➫ ➤✄➦✎➤✗➫✄➳✲➤✄➟♠➡➾➫ ➤✄➟➠➵✓➧❃➡✼➸

❖ ❧ ❞✼❥ ❫❵❂✂❛❝✻✾✿ ❡ ❫❵❞✴✻✾❧★❫❵❢❆✿❈❧★❫❵✻✾✿✼↕✌❫❵❭ ❫❵❂✷❫❵❞✼❭ ➅✯✻✾✐★✻✾❡ ❭ ✻✾❧★❭ ❁➐❡ ❞
í ❫❵✻✾✿ ♠ ❁ ♠♥❫↔❞✼❁✠❁✠❣❤✻✾❞✴❁✠➨◆✿ ❂✂✻ ÿ ❫❵❡ ❞✺✉

π σsname color red
Boats serves Sailors((

’ ’
) Re)

=
>< ><

❖

❇➷❛❝❫❵❂✂❁➐❁✠❥ ❥ ❡ ↕✌❡ ❁✠❞✼✿❈♠♥❫❵❭ ❢❀✿ ❡ ❫❵❞✺✉
π π π σsname sid bid color red

Boats s Sailors(((
’ ’

) Re))= >< ><

☛ ❤✛➙✂Ô✠❐ Ó ❡✱ï✢ø♥Ö î ❒rî ➚✢❐ Ó★➱✟❮✔ð✼ú✟î ð⑤ù✷Ö ✃✌î ❰✙Û✌î ➪♥❐ ð▲Ö ✃✌❐♥ú î Ó ❰ Ö◆❰ ï✢Õ Ô✠Ö î ï✔ð✙➶
�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✣ ✶

➜❨➝ ➞❃➟♠➦✄➡✼➝ ➩ ➧✼➫ ➦✛➭❜➯✞➧✼➲ ➳✎➤✛➫ ➤✄➦✎➤✞➫✄➳✎➤✄➟♠➡➾➫ ➤✄➟♠➧✼➫❥➡●➹❣➫ ➤✄➤✞➞➾➵✓➧❃➡✼➸

❖

✸✺✻✾❞✴❡ ❣❆❁✠❞✼✿ ❡ ❥ ➅✯✻✾❭ ❭❵❂✂❁✠❣❤❫❵❂✱➆★❂✂❁✠❁✠❞✴❧★❫❵✻✾✿ ♠♥❄✾✿ ✹✼❁✠❞✴❥ ❡ ❞✼❣
♠♥✻✾❡ ❭ ❫❵❂✂♠r❴✴✹✼❫✙➨ ✐★❁➐❂✂❁✠♠♥❁✠❂✂✐★❁✠❣❤❫❵❞✼❁➐❫❵❥✼✿ ✹❀❁✠♠♥❁➐❧★❫❵✻✾✿ ♠❵✉

ρ σ(, (
’ ’ ’ ’

))Tempboats
color red color green

Boats
= ∨ =

π sname Tempboats serves Sailors(Re)>< ><

❖

✸✺✻✾❞✴✻✾❭ ♠♥❫↔❣❆❁✠❥ ❡ ❞✼❁ ➣ ❁✠❛❝✽❀❧★❫❵✻✾✿ ♠r❢❆♠♥❡ ❞✼➆✯❢❀❞✼❡ ❫❵❞✺➉❪➜ ➘✴❫❵❴➼➴✌➞
❖ ➷ ✹✼✻✾✿❈✹✼✻✾✽❀✽❀❁✠❞✼♠r❡ ❥ ❡ ♠r❂✂❁✠✽❀❭ ✻✾↕✌❁✠❣❤❧❈➅ ❡ ❞✴✿ ✹✼❡ ♠r➴★❢❀❁✠❂✂➅✗➴∨ ∧

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ✣ ❵

➜❨➝ ➞❃➟♠➦✄➡✼➝ ➩ ➧✼➫ ➦✛➭❜➯✞➧✼➲ ➳✎➤✛➫ ➤✄➦✎➤✞➫✄➳✎➤✄➟♠➡➾➫ ➤✄➟♠➡✼➞❃➟ ➡●➹❣➫ ➤✄➤✞➞➾➵✓➧❃➡✼➸

❖

❅❀❂✂❁✠✐★❡ ❫❵❢❀♠r✻◆✽❀✽❀❂✂❫❵✻◆↕✌✹✴❴✴❫❵❞✽➨ ✿❈❴✴❫❵❂✸✹r➉▲➦➧❢❀♠♥✿❈❡ ❣❆❁✠❞✼✿ ❡ ❥ ➅
♠♥✻✾❡ ❭ ❫❵❂✂♠r❴✴✹✼❫✙➨ ✐★❁➐❂✂❁✠♠♥❁✠❂✂✐★❁✠❣❤❂✂❁✠❣❤❧★❫❵✻✾✿ ♠✌❄✾♠♥✻✾❡ ❭ ❫❵❂✂♠
❴✴✹✼❫✙➨ ✐★❁➐❂✂❁✠♠♥❁✠❂✂✐★❁✠❣❤➆★❂✂❁✠❁✠❞✴❧★❫❵✻✾✿ ♠♥❄✾✿ ✹✼❁✠❞✴❥ ❡ ❞✼❣❤✿ ✹✼❁
❡ ❞✼✿ ❁✠❂✂♠♥❁✠↕✌✿ ❡ ❫❵❞✦➜ ❞✼❫❵✿ ❁➐✿ ✹✼✻✾✿ ❩✢➡ ➲❱❡ ♠r✻↕✹★❁✠➅▼❥ ❫❵❂✱➝❷✻✾❡ ❭ ❫❵❂✂♠♥➞✏✉

ρ π σ(, ((
’ ’

) Re))Tempred
sid color red

Boats serves
=

><

π sname Tempred Tempgreen Sailors(())∩ ><

ρ π σ(, ((
’ ’

) Re))Tempgreen
sid color green

Boats serves
=

><

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ❉ ➞

➜❨➝ ➞❃➟➠➸ ➯✞➤✛➞❃➡✼➢➥➤✄➦✾➧✸➨✾➦✄➡✼➝ ➩ ➧✼➫ ➦✛➭❜➯✞➧✼➲ ➳✲➤✛➫ ➤✎➦✄➤✞➫✄➳✲➤✄➟♠➡✼➩ ➩❥➵✓➧❃➡✼➸ ➦

❖ ➬ ♠♥❁✠♠r❣❆❡ ✐★❡ ♠♥❡ ❫❵❞ ❁ ♠♥↕✌✹✼❁✠❛❝✻✾♠r❫❵❥❀✿ ✹✼❁➐❡ ❞✼✽❀❢❀✿❈❂✂❁✠❭ ✻✾✿ ❡ ❫❵❞✼♠✿ ❫➱➮❱❛❝❢❀♠♥✿✼❧★❁➐↕✌✻✾❂✂❁✠❥ ❢❀❭ ❭ ➅✯↕✌✹✼❫❵♠♥❁✠❞✺✉

ρ π π(, (
,

Re) / ())Tempsids
sid bid

serves
bid

Boats

π sname Tempsids Sailors()><

❖

➣ ❫↔❥ ❡ ❞✼❣❤♠♥✻✾❡ ❭ ❫❵❂✂♠r❴✴✹✼❫✙➨ ✐★❁➐❂✂❁✠♠♥❁✠❂✂✐★❁✠❣❤✻✾❭ ❭✆✃ ❧ ❞✼✿ ❁✠❂✂❭ ✻❀✹★❁✲➨❷❧★❫❵✻✾✿ ♠❵✉
/ (

’ ’
)π σ

bid bname Interlake
Boats

=
❿ ❿ ❿ ❿ ❿

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡✌✁ ✡ ✙✛✚ ✓ ✜✢✝ ✘ ✖ ✕ ✝ ❉ ✣

✷ ●✯→❍→❍✩✫✶★■

❖

➣ ✹✼❁➐❂✂❁✠❭ ✻✾✿ ❡ ❫❵❞✼✻✾❭❵❛❝❫❵❣❆❁✠❭❵✹✼✻✾♠r❂✂❡ ➆★❫❵❂✂❫❵❢❀♠♥❭ ➅✯❣❆❁✠❥ ❡ ❞✼❁✠❣➴★❢❀❁✠❂✂➅✯❭ ✻✾❞✼➆★❢❀✻✾➆★❁✠♠r✿ ✹✼✻✾✿✼✻✾❂✂❁➐♠♥❡ ❛❝✽❀❭ ❁➐✻◆❞✼❣✽❀❫❵❴✴❁✠❂✂❥ ❢❀❭✛♦
❖ ♣ ❁✠❭ ✻✾✿ ❡ ❫❵❞✼✻✾❭❵✻✾❭ ➆★❁✠❧★❂✂✻❱❡ ♠▲❛❝❫❵❂✂❁➐❫❵✽❀❁✠❂✂✻✾✿ ❡ ❫❵❞✼✻✾❭ ❁ ❢❀♠♥❁✠❥ ❢❀❭✻✾♠r❡ ❞✼✿ ❁✠❂✂❞✼✻✾❭❵❂✂❁✠✽❀❂✂❁✠♠♥❁✠❞✼✿ ✻✾✿ ❡ ❫❵❞✴❥ ❫❵❂✱➴★❢❀❁✠❂✂➅❁✠✐★✻✾❭ ❢❀✻✾✿ ❡ ❫❵❞➬✽❀❭ ✻✾❞✼♠❵♦
❖

➝❷❁✠✐★❁✠❂✂✻✾❭❵❴✴✻✾➅★♠r❫❵❥✼❁✠➨❷✽❀❂✂❁✠♠♥♠♥❡ ❞✼➆✯✻❱➆★❡ ✐★❁✾❞✴➴★❢❀❁✠❂✂➅ ❁ ✻➴★❢❀❁✠❂✂➅✯❫❵✽❀✿ ❡ ❛❝❡ ❐✾❁✠❂✱♠♥✹✼❫❵❢❀❭ ❣❤↕✌✹✼❫❵❫❵♠♥❁➐✿ ✹❀❁➐❛❝❫❵♠♥✿❁✠❥ ❥ ❡ ↕✌❡ ❁✠❞✼✿❈✐★❁✠❂✂♠♥❡ ❫❵❞✺♦

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ ✙

✚✜✛✣✢✂✤✦✥✠✧✂★✦✩✪✤✦✢✬✫✜✤✦✢✂✭✯✮✪✢✂✮✪✰

✱✳✲✯✴✶✵✸✷ ✹✠✺✼✻✶✽✶✾✿✴✶✺✂✷❁❀

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ ❂

✚✜✛✣✢✂✤✦✥✠✧✂★✦✩✪✤✦✢✬✫✜✤✦✢✂✭✯✮✪✢✂✮✪✰

❖

✱✳❃❅❄❆✹✠❇❉❈ ❊❋✷ ●❍❃❏■ ❑ ✴▼▲✣❃❅◆✸✺✂❇❅❖◗P✶❘❁❙✶❚ ❯✼❱❲❯❲❚ ❳✏❨ ❩ ❬✌❭✣❳✌❚❫❪❴❳✌❚ ❪❴❘✣❚ ❘✣❵ ❛ ❜✦❝❉✱✳❞
✴✶❊✯❡❣❢❤❬✌✐❤❳✌❩ ❭❥❱❲❯❲❚ ❳✌❨ ❩ ❬✏❭✣❳✌❚❫❪❴❳✌❚ ❪❴❘✣❚ ❘❁❵ ❛ ❦❤❝❉✱✳❞✏❧

❖

✱✳✴✶❑ ♠✌◆✸❑ ◆✸❇❉✲✯✴✶❇♦♥✶❳✏❱❲❩ ❳✏♣✏❚ ❯✂❵❲q✶❪❴❬✌❭❁❵❲❨ ❳✌❭✣❨✟❵❲q✶❪r❬✌✐❤❙✶❳✌❱❲❩ ❵❲❬✌❭❥❬✌❙▼❵❲✽✶❚ ❬✌s✶❩ ❪❴❳✌❚
❪❴❬✌❭✣❭✣❯❲❪❴❨ ❩ ♥✶❯✂❵✦✴✶❊✯❡❆t✏❘✣❳✏❭✣❨ ❩ ✉✂❩ ❯❲❱✂❵✶❧
✈✬✇❫①❁② ③✼④✦⑤✌⑥ ⑦ ⑤✌⑧✠⑨ ⑩❴❶❁⑥ ⑤✌❷✶❸✠⑩✦❹❻❺✠⑩❴⑥❅❼ ⑦ ❽ ⑩❴❽ ❾r❸✠⑩❴❿✠⑧✠❹✏➀❫❷✶➁◗❿ ❹❻➂✠➃ ➄❻➅✌➆ ➇ ➈✟❽
✈✬➉❉①❁② ③✼④✦⑤✌⑥ ⑦ ⑤✌⑧✠⑨ ⑩❴❶❁⑥ ⑤✌❷✶❸✠⑩✿❹❻❺✠⑩❴⑥❅➊✌➋✔➌❉➍❲➎ ➏✳➇ ➆ ➇ ➌➐➇ ➏✠➃ ➈✣❼ ➑➓➒ ⑦ ⑩❴⑨ ➁◗❺❻⑤✌⑨ ➀❫⑩✂❶✔➂ ❽
✈❤➔❫❹❻❿ →↔➣❫↕❁➙❋⑤✌❷✶➁➓➛❉↕❁➙❥⑤✌⑥ ⑩✿❶✔⑦ ➜✬➝▼⑨ ⑩✦❶✔➀▼⑧✠❶✔⑩❴❿ ❶✣❹❻➒▼➒ ⑦ ⑥ ❶✔❿ ➞ ❹❻⑥ ➁❫⑩❴⑥✣⑨ ❹❻❸✠⑦ ➟✔❽

❖ ➠✿➡ ✵✸✺✂✹✠❇r❇r❈ ❃❅❊✯❇❉❈ ❊❋✷ ✲✯✹➓♠✌✴✶❑ ♠✌◆✸❑ ◆✸❇❉✴✶✺✂✹➓♠✌✴▼❑ ❑ ✹✠❡◗✉✂❬✌❱❲✐❤❘✣❚ ❳✌❵✶❧✼➢❤❊✴✶❊✯❇r●❋✹✠✺✼✷ ◆✸✵✸❑ ✹➓❈ ❇❉✹✠❇r❇r✹✠❊✯✷ ❈ ✴✶❑ ❑ ➤✪✴✶❊❋✴✶❇r❇r❈ ➥✣❊✯❄❆✹✠❊✯✷❁❃❅■✯♠✌❃❅❊✯❇r✷ ✴✶❊✯✷ ❇
✷ ❃❏▲❁✴✶✺✂❈ ✴✶➦✣❑ ✹✠❇❉✷ ✲✯✴✶✷❁❄➧✴✶➨✣✹➓✷ ✲✯✹➓■ ❃❅✺✂❄❆◆✸❑ ✴◗✹✠▲✣✴✶❑ ◆✸✴▼✷ ✹➓✷ ❃❏❨✟❱❲❘✣❯▼❧

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ ➩

➫➭★✦➯➭✤✦✧✂✩➲✚✜✛✣✢✂✤✦✥✠✧✂★✦✩✪✤✦✢✬✫✜✤✦✢✂✭✯✮✪✢✂✮✪✰

❖ ➳ ❘✣❯✂❱❲➵◗✲✯✴✶❇❉✷ ✲✯✹➓■ ❃❅✺✂❄➸❖
x x xn p x x xn1 2 1 2, ,..., | , ,...,

î

❖ ➺ ❭✣❵✂➻↔❯✂❱✦❈ ❊✯♠✌❑ ◆✸❡✿✹✠❇❉✴✶❑ ❑❅✷ ◆✿✵✸❑ ✹✠❇ ✷ ✲✯✴✶✷
❄❆✴✶➨✣✹➓✷ ✲✯✹✿✉✂❬✏❱❲✐❤❘✣❚ ❳ ➦✣✹➓❨ ❱❲❘❁❯✶❧x x xn1 2, ,...,

p x x xn1 2, ,...,

❖ ➼ ❬✌❱❲✐❤❘✣❚ ❳ ❈ ❇❉✺✂✹✠♠✌◆✸✺✂❇r❈ ▲✣✹✠❑ ➤✪❡✿✹✠■ ❈ ❊✯✹✠❡✿✽✶❇r✷ ✴✶✺✂✷ ❈ ❊✯➥✪●❋❈ ✷ ✲❇r❈ ❄❆✵✸❑ ✹➓❳✌❨ ❬✌✐❤❩ ❪❅✉✂❬✏❱❲✐❤❘✣❚ ❳✌❵➸❛ ➥✣✹✠✷ ✷ ❈ ❊✯➥❥✷ ◆✸✵✸❑ ✹✠❇❉■ ✺✂❃❅❄
✺✂✹✠❑ ✴✶✷ ❈ ❃❅❊✯❇❉❃❅✺✼❄❆✴▼➨✣❈ ❊✯➥✪♠✌❃✣❄❆✵✸✴✶✺✂❈ ❇r❃✣❊✯❇❉❃❅■✯▲✣✴✶❑ ◆✸✹✠❇r❞ ✽
✴✶❊✯❡❣➦✣◆✸❈ ❑ ❡✿❈ ❊✯➥✪➦✣❈ ➥✣➥✣✹✠✺✼✴✶❊✯❡❣➦✣✹✠✷ ✷ ✹✠✺✼■ ❃❅✺✂❄❆◆✸❑ ✴✶❇❉◆✸❇r❈ ❊✯➥
✷ ✲✯✹➓❚ ❬✌s✶❩ ❪❴❳✌❚❫❪❴❬✌❭✣❭❁❯❲❪❴❨ ❩ ♥✶❯✂❵✶❧

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ ➽

➫➭✚✜✫➚➾✪★✦➪✣➯➭✮✪✢✂✤✦✰

❖ ➺ ❨ ❬✌✐❤❩ ❪❅✉✂❬✌❱✂✐❤❘✣❚ ❳✌➶✈ ❾✼❹❻⑥✣➹❤➋✔➅❉➘✣❾➐❹✏⑥❤➹❤➋❲➅➐➟❲❹❻❷✶❶✔❿ ⑤✌❷✶❿
✈✬➋❲➅➧⑦ ❶✯❹❻❷✶⑩✦❹❻➒

❖ ➼ ❬✌❱❲✐❤❘✣❚ ❳✌➶
➴ ✴✶❊❋✴✶✷ ❃❅❄❆❈ ♠✳■ ❃❅✺✂❄❆◆✸❑ ✴▼✽◗❃❅✺
➴ ✽✶●❋✲✯✹✠✺✂✹➓✵❍✴✶❊✯❡❣➷✪✴▼✺✂✹➓■ ❃❅✺✂❄❆◆✸❑ ✴✶❇r✽◗❃❅✺
➴ ✽✶●❋✲✯✹✠✺✂✹➓▲✣✴✶✺✂❈ ✴✶➦✣❑ ✹➓➬➮❈ ❇❁✉✂❱❲❯✂❯✦❈ ❊❋✵↔❛ ➬➐❞ ✽✬❃❅✺
➴ ✽✶●❋✲✯✹✠✺✂✹➓▲✣✴✶✺✂❈ ✴✶➦✣❑ ✹➓➬➮❈ ❇❁✉✂❱❲❯✂❯✦❈ ❊❋✵↔❛ ➬➐❞

❖

❜✿✲✯✹➓◆✸❇r✹➓❃❅■✯➷✣◆✸✴✶❊✯✷ ❈ ■ ❈ ✹✠✺✂❇ ✴✶❊✯❡ ❈ ❇❉❇r✴✶❈ ❡❣✷ ❃✪♣✏❩ ❭✣➱ ➬❤❧
✈❤✃➧❺✠⑤✌⑥ ⑦ ⑤✌⑧✠⑨ ⑩✿❿ →✶⑤✌❿✶⑦ ❶✯❷✶❹❻❿✠⑧✠❹❻➀❫❷✶➁➓⑦ ❶✯➒ ⑥ ⑩❴⑩❴❽

x x xn Rname1 2, ,..., ∈
< > = ≤ ≥ ≠, , , , ,

¬ ∧ ∨p p q p q, ,

∃X p X(())

∀ X p X(())
∃ X ∀ X

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ ❐

➾✪➪✣✛✣✛❒✤✦✩✪❮Ï❰❆★✦✮❏✩✪❮ÑÐ❒✤✦➪✣✧✂✤✦Ò➐✢✂✛✣✰

❖

❜✿✲✯✹➓◆✸❇r✹➓❃❅■✯➷✣◆✸✴✶❊✯✷ ❈ ■ ❈ ✹✠✺✂❇ ✴✶❊✯❡ ❈ ❊❋✴◗■ ❃❅✺✂❄❆◆✸❑ ✴◗❈ ❇
❇r✴✶❈ ❡❣✷ ❃✪♣✏❩ ❭✣➱ ➬❤❧
✈❤✃➧❺✠⑤✌⑥ ⑦ ⑤✌⑧✠⑨ ⑩✿❿ →✶⑤✌❿✶⑦ ❶✯❷✶❹❻❿✠⑧✠❹❻➀❫❷✶➁➓⑦ ❶✯➒ ⑥ ⑩❴⑩ ❽

❖ Ó ✹✠✷❁◆✸❇❉✺✂✹✠▲✣❈ ❇r❈ ✷❁✷ ✲✯✹➓❡✿✹✠■ ❈ ❊✯❈ ✷ ❈ ❃❅❊❋❃❅■✯✴◗➷❁◆✸✹✠✺✂➤❉❖

∃ X ∀ X

x x xn p x x xn1 2 1 2, ,..., | , ,...,

î

❖

❜✿✲✯✹✠✺✂✹➓❈ ❇❉✴✶❊❋❈ ❄❆✵✸❃❅✺✂✷ ✴✶❊✯✷❁✺✂✹✠❇r✷ ✺✂❈ ♠✌✷ ❈ ❃❅❊✳❖✼✷ ✲✯✹➓▲✣✴✶✺✂❈ ✴✶➦✣❑ ✹✠❇
➡✦Ô ✽✿❧ ❧ ❧ ✽ ➡ ❊❋✷ ✲✯✴✶✷✯✴✶✵✸✵✸✹✠✴✶✺✼✷ ❃❏✷ ✲✯✹➓❑ ✹✠■ ✷❁❃❅■✸Õ❁Ö✔×❫❄❆◆✸❇✌✷❁➦✣✹✷ ✲✯✹➓❬✌❭✣❚ ➵◗■ ✺✂✹✠✹➓▲✣✴✶✺✂❈ ✴✶➦✣❑ ✹✠❇❉❈ ❊❋✷ ✲✯✹➓■ ❃❅✺✂❄➧◆✸❑ ✴◗✵↔❛ ❧ ❧ ❧ ❞✏❧

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ Ø

➾✪✧✂✩✪❮Ï✤✦✢✂✢✬✰✣✤✦✧✂✢✂★✦➪✣✰❒ÙÚ✧✂✥✠ÛÜ✤➸➪✣✤✦✥✠✧✂✩♦ÝÞ✤✦Ò➐★✦ß↔✛❒à

❖

❜✿✲✯✹➓♠✌❃❅❊✯❡✿❈ ✷ ❈ ❃❅❊ ✹✠❊✯❇r◆✸✺✂✹✠❇❉✷ ✲✯✴✶✷
✷ ✲✯✹➓❡✿❃❅❄❆✴✶❈ ❊❋▲✣✴✶✺✂❈ ✴✶➦✣❑ ✹✠❇❉á q✶â❤q✿P✬✴✶❊✯❡ ➺ ✴✶✺✂✹➓➦✣❃❅◆✸❊✯❡❣✷ ❃■ ❈ ✹✠❑ ❡✿❇❉❃❅■✯✷ ✲✯✹➓❇r✴✶❄❆✹➓ã❫✴✶❈ ❑ ❃❅✺✂❇❉✷ ◆✸✵✸❑ ✹✸❧

❖

❜✿✲✯✹➓✷ ✹✠✺✂❄ ✷ ❃✪✷ ✲✯✹➓❑ ✹✠■ ✷❁❃❅■✯Õ✯Ö✔×✼❛ ●❋✲✯❈ ♠✌✲❋❇r✲✯❃❅◆✸❑ ❡
➦✣✹➓✺✂✹✠✴✶❡❣✴✶❇❉❵❲❘✣❪❴ä◗❨ ä✶❳✌❨ ❞✯❇r✴▼➤✣❇❉✷ ✲✯✴✶✷❁✹✶▲✣✹✶✺✂➤✪✷ ◆✸✵✸❑ ✹
✷ ✲✯✴✶✷❁❇r✴✶✷ ❈ ❇r■ ❈ ✹✠❇❏P✿å✠æ◗❈ ❇❉❈ ❊❋✷ ✲✯✹➓✴✶❊✯❇r●❋✹✠✺▼❧

❖ ç ❃❅❡✿❈ ■ ➤✪✷ ✲✯❈ ❇❉➷✣◆✸✹✠✺✂➤❥✷ ❃❏✴✶❊✯❇r●❋✹✠✺▼❖✈❤è✠⑦ ❷✶➁◗❶✔⑤✌⑦ ⑨ ❹❻⑥ ❶❁é↔→✶❹♦⑤✌⑥ ⑩✦❹❻⑨ ➁❫⑩❴⑥✣❿ →✠⑤✌❷↔êrë➐❹❻⑥✣→✠⑤✌❺✠⑩✿⑤➐⑥ ⑤✌❿ ⑦ ❷✶❸♦➀❫❷✶➁❫⑩❴⑥ì ❾r⑤✌❷✶➁➓⑤✌⑥ ⑩✦➟✔⑤✌⑨ ⑨ ⑩❴➁◗í î ❹❻⑩❴ï ❽

I N T A I N T A Sailors T, , , | , , , ∈ ∧ >

î

7

I N T A Sailors, , , ∈

I N T A, , ,
I N T A, , ,

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ ð

ñ◗ò ó▼ô❣õ✌ö✦ò ÷ ø✦ù õ❍ù ö✦ú û✌ôýüýþ❣ÿ✁�❁ø✄✂ ☎✏û❣ù û✏õ✌û❁ù✆☎✏û✌ô✞✝❴ø▼ö✦ú✠✟☛✡✌☞✌✍

❖ ✎ ✹➓✲✯✴✶▲✣✹➓◆✸❇r✹✠❡ ✴✶❇❉✴◗❇r✲✯❃❅✺✂✷ ✲✯✴✶❊✯❡
■ ❃❅✺

❖ ✏ ❃❅✷ ✹➓✷ ✲✯✹➓◆✸❇r✹➓❃❅■ ✷ ❃❏■ ❈ ❊✯❡❣✴◗✷ ◆✸✵✸❑ ✹◗❈ ❊❋❝➐✹✠❇r✹✠✺✂▲✣✹✠❇❉✷ ✲✯✴✶✷
Õ ✑ ❃❅❈ ❊✯❇❉●❋❈ ✷ ✲✯×❫✷ ✲✯✹➓ã❫✴✶❈ ❑ ❃❅✺✂❇❉✷ ◆✸✵✸❑ ✹➓◆✸❊✯❡✿✹✠✺✼♠✌❃❅❊✯❇r❈ ❡✿✹✠✺✂✴✶✷ ❈ ❃❅❊✳❧

I N T A I N T A Sailors T, , , | , , , ∈ ∧ > ∧

î
7

∃ ∈ ∧ = ∧ =

Ir Br D Ir Br D serves Ir I Br, , , , Re 103

()∃ Ir Br D, , . . .
()()()∃ ∃ ∃Ir Br D . . .

∃

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ ✒

ñ◗ò ó▼ô❣õ✌ö✦ò ÷ ø✦ù õ❍ù ö✦ú û✌ôýüýþ❣ÿ✁�❁ø✄✂ ☎✏û❣ù û✏õ✌û❁ù✆☎✏û✌ô❣ö❒ù û✏ô✞✝❴ø▼ö✦ú

❖ ✓ ➦✣❇r✹✠✺✂▲✣✹➓✲✯❃❅●Ü✷ ✲✯✹➓✵✸✴✶✺✂✹✠❊✯✷ ✲✯✹✠❇r✹✠❇❉♠✌❃❅❊✸✷ ✺✂❃❅❑❅✷ ✲✯✹➓❇r♠✌❃❅✵✸✹➓❃❅■
✹✠✴✶♠✌✲❋➷✣◆✸✴✶❊✯✷ ❈ ■ ❈ ✹✠✺✂× ❇❉➦✣❈ ❊✯❡✿❈ ❊✯➥❉❧

❖

❜✿✲✯❈ ❇❉❄❆✴✶➤✪❑ ❃❅❃❅➨❥♠✌◆✸❄❆➦✣✹✠✺✂❇r❃✣❄❆✹✠✽✶➦✣◆✸✷✯●❋❈ ✷ ✲❋✴◗➥✣❃❅❃❅❡❣◆✸❇r✹✠✺
❈ ❊✯✷ ✹✠✺✂■ ✴✶♠✌✹✠✽✶❈ ✷❁❈ ❇❉▲✣✹✠✺✂➤✪❈ ❊✯✷ ◆✸❈ ✷ ❈ ▲✣✹✸❧◗❛ ✎ ✴▼❈ ✷❁■ ❃❅✺✕✔❤❀ ➠✗✖ ❞

I N T A I N T A Sailors T, , , | , , , ∈ ∧ > ∧

î
7

∃ ∈ ∧ = ∧

Ir Br D Ir Br D serves Ir I, , , , Re

∃ ∈ ∧ = ∧ =

B BN C B BN C Boats B Br C red, , , , ’ ’

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ ✘

➾✪✧✂✩✪❮Ï✰✣✤✦✧✂✢✂★✦➪✣✰❒ÙÚÛ↔★✚✙ ß↔✛❒➪✣✛✣✰✣✛✣➪❁ß↔✛✣❮Ü✤✦✢✂✢✬Ò➐★✦✤✦✥✠✰

❖ ✛ ❈ ❊✯❡❣✴✶❑ ❑❅❇r✴✶❈ ❑ ❃❅✺✂❇❉á✯❇r◆✸♠✌✲❋✷ ✲✯✴✶✷❁■ ❃❅✺✼✹✠✴✶♠✏✲✢✜✤✣ ✷ ◆✸✵✸❑ ✹✹✠❈ ✷ ✲✯✹✠✺✼❈ ✷❁❈ ❇❉❊✯❃❅✷❁✴◗✷ ◆✸✵✸❑ ✹➓❈ ❊❋❀✿❃❅✴✶✷ ❇♦❃❅✺✼✷ ✲✯✹✠✺✂✹➓❈ ❇❉✴◗✷ ◆✸✵✸❑ ✹➓❈ ❊
❝➐✹✠❇r✹✠✺✂▲✣✹✠❇❉❇r✲✯❃❅●❋❈ ❊✯➥✪✷ ✲✯✴✶✷✯❇r✴✶❈ ❑ ❃❅✺✼á✯✲✯✴▼❇❉✺✂✹✠❇r✹✠✺✂▲✣✹✠❡❣❈ ✷✌❧

I N T A I N T A Sailors, , , | , , , ∈ ∧

î

∀ ¬ ∈ ∨

B BN C B BN C Boats, , , ,

∃ ∈ ∧ = ∧ =

Ir Br D Ir Br D serves I Ir Br B, , , , Re

B BN C, ,

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ ✙ ✥

✦✢✧✩★✫✪✭✬✤✮✌✧✩✯✱✰✌✲✤✬✴✳✶✵✕✰✌✷✩✸✕✹✢✲✤✹✤✬✤✹✤✲✤✸✺✹✤✪✞✮✌✯✩✯✼✻✽✰✌✮✌✾✿✬✢❀✿✮❂❁❃✮✌✧✩★✗❄ ❅

❖

ã❫❈ ❄❆✵✸❑ ✹✠✺✼❊✯❃❅✷ ✴✶✷ ❈ ❃❅❊✯✽✶❇r✴▼❄❆✹➓➷✣◆✸✹✠✺✂➤❉❧◗❛ ç ◆✸♠✌✲❋♠✌❑ ✹✠✴✶✺✂✹✠✺ ✖ ❞
❖

❜✿❃❏■ ❈ ❊✯❡❣❇r✴✶❈ ❑ ❃❅✺✂❇❉●❋✲✯❃❅× ▲✣✹➓✺✂✹✠❇r✹✠✺✂▲✣✹✠❡❣✴▼❑ ❑❅✺✂✹✠❡❣➦✣❃❅✴✶✷ ❇❅❖

I N T A I N T A Sailors, , , | , , , ∈ ∧

î

∀ ∈B BN C Boats, ,

∃ ∈ = ∧ =

Ir Br D serves I Ir Br B, , Re

C red Ir Br D serves I Ir Br B≠ ∨ ∃ ∈ = ∧ =

’ ’ , , Re❆ ❆ ❆ ❆ ❆

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ ✙ ✙

❇➸✩✪✰✣✤❉❈✦✛❋❊➭✮✪✛✣➪✣✧✂✛✣✰✠●■❍❑❏✫▲↔➪✣✛✣✰✣✰✣✧✂ß↔✛❋▼❆★✦ÙÚ✛✣➪

❖ ◆ ✷❁❈ ❇❉✵✸❃❅❇r❇r❈ ➦✣❑ ✹➓✷ ❃❏●❋✺✂❈ ✷ ✹➓❇r➤✣❊✯✷ ✴▼♠✌✷ ❈ ♠✌✴✶❑ ❑ ➤❥♠✌❃❅✺✂✺✂✹✠♠✌✷❁♠✌✴✶❑ ♠✏◆✸❑ ◆✸❇➷✣◆✸✹✠✺✂❈ ✹✠❇❉✷ ✲✯✴✶✷❁✲✯✴✶▲✣✹➓✴✶❊❋❈ ❊✯■ ❈ ❊✯❈ ✷ ✹➓❊✯◆✸❄➧➦✣✹✠✺✼❃❅■✯✴✶❊✯❇r●❋✹✠✺✂❇ ✖ã❫◆✸♠✌✲❋➷✣◆✸✹✠✺✂❈ ✹✠❇❉✴✶✺✂✹➓♠✌✴✶❑ ❑ ✹✠❡❣❘✣❭✣❵❲❳ ✉❴❯ ❧
✈❤⑩❴❽ ❸✠❽ ❾

❖ ◆ ✷❁❈ ❇❉➨✣❊✯❃❅●❋❊❋✷ ✲✯✴✶✷❁✹✶▲✣✹✠✺✂➤✪➷✣◆✸✹✠✺✂➤✪✷ ✲✯✴✶✷✸♠✌✴✶❊❋➦✣✹➓✹ ➡ ✵✸✺✂✹✠❇r❇r✹✠❡❈ ❊❋✺✂✹✠❑ ✴✶✷ ❈ ❃❅❊✯✴✶❑❅✴✶❑ ➥✣✹✠➦✣✺✂✴◗♠✌✴✶❊❋➦✣✹➓✹ ➡ ✵✸✺✂✹✠❇r❇r✹✠❡❣✴✶❇❉✴◗❇r✴✶■ ✹➷✣◆✸✹✠✺✂➤✪❈ ❊❋❦❤❝➐✱■❖➓❜✦❝➐✱✁P▼✷ ✲✯✹➓♠✌❃❅❊✯▲✣✹✠✺✂❇✌✹➓❈ ❇❉✴✶❑ ❇r❃❏✷ ✺✂◆✸✹✸❧
❖ ◗ ❯❲❚ ❳✌❨ ❩ ❬✏❭✣❳✌❚❙❘❉❬✌✐❤❙✶❚ ❯❲❨ ❯❲❭❁❯❲❵✂❵ ❖✕✔❤◆✸✹✠✺✂➤✪❑ ✴▼❊✯➥✣◆✸✴✶➥✣✹❍❛ ✹✸❧ ➥❉❧ ✽ã❙✔ Ó ❞✯♠✌✴✶❊❋✹ ➡ ✵✸✺✂✹✠❇r❇❉✹✶▲✣✹✠✺✂➤✪➷✣◆✸✹✠✺✂➤✪✷ ✲✯✴▼✷❁❈ ❇❉✹ ➡ ✵✸✺✂✹✠❇r❇r❈ ➦✣❑ ✹❈ ❊❋✺✂✹✠❑ ✴✶✷ ❈ ❃❅❊✯✴✶❑❅✴✶❑ ➥✣✹✠➦✣✺✂✴❚❖✠♠✌✴✶❑ ♠✌◆✸❑ ◆✸❇❅❧

S S Sailors| ¬ ∈

î

�✂✁ ✄ ✁ ☎ ✁ ✆ ✝✟✞✠✁ ✡ ✁ ☛ ✝ ☞✌✝ ✡ ✄ ✍ ✎ ✆ ✄ ✝ ☞✏✆ ✑ ✒✔✓ ✒✟✁ ☞✌✁ ✕ ✖ ✗ ✆ ✘ ✡ ✁ ✡ ✙ ❂

❯ ✮✪➯➭➯➭✤✦➪✠❱

❖

❝➐✹✠❑ ✴✶✷ ❈ ❃❅❊✯✴✶❑❅♠✌✴✶❑ ♠✌◆✸❑ ◆✸❇❉❈ ❇❉❊✯❃❅❊❲✣ ❃❅✵✸✹✠✺✂✴✶✷ ❈ ❃❅❊✯✴✶❑ ✽✶✴✶❊✯❡
◆✸❇r✹✠✺✂❇❉❡✿✹✠■ ❈ ❊✯✹➓➷✣◆✸✹✠✺✂❈ ✹✠❇❉❈ ❊❋✷ ✹✠✺✂❄❆❇❉❃❅■✯●❋✲✯✴✶✷❁✷ ✲✯✹✠➤
●❋✴✶❊✯✷ ✽✶❊✯❃❅✷❁❈ ❊❋✷ ✹✠✺✂❄❆❇♦❃❅■✯✲✯❃❅●Ü✷ ❃✪♠✌❃✣❄➧✵✸◆✸✷ ✹➓❈ ✷✌❧
❛ ❦❤✹✠♠✌❑ ✴✶✺✂✴✶✷ ❈ ▲✣✹✠❊✯✹✠❇r❇❅❧ ❞

❖

➢❤❑ ➥✣✹✠➦✣✺✂✴◗✴✶❊✯❡❣❇r✴✶■ ✹➓♠✌✴✶❑ ♠✌◆✸❑ ◆✸❇❉✲✯✴▼▲✣✹➓❇r✴▼❄❆✹
✹ ➡ ✵✸✺✂✹✠❇r❇r❈ ▲✣✹➓✵✸❃❅●❋✹✠✺✂✽✶❑ ✹✠✴✶❡✿❈ ❊✯➥✪✷ ❃❏✷ ✲✯✹◗❊✯❃❅✷ ❈ ❃❅❊❋❃❅■✺✂✹✠❑ ✴✶✷ ❈ ❃❅❊✯✴✶❑❅♠✌❃❅❄❆✵✸❑ ✹✠✷ ✹✠❊✯✹✠❇r❇❅❧

1. Find the' names and ages of all sailors.

SELECT DISTINCT S.sname, S.age FROM Sailors S

2. Find all sailors with a rating above 7.

SELECT S.sid, S.sname, S.rating, S.age FROM Sailors AS S WHERE

S.rating > 7

3. Find the names of sailors 'Who have reserved boat number 103.

SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid = R.sid AND

R.bid=103

(Or)

SELECT Sname FROM Sailors, Reserves WHERE Sailors.sid = Reserves.sid

AND bid=103

4.Find the sids of sa'iloTs who have TeseTved a Ted boat.

SELECT R.sid FROM Boats B, Reserves R WHERE B.bid = R.bid AND 8.color

= 'red'

5. Find the names of sailors Who have Reserved a Red boat.

SELECT S.sname FROM Sailors S, Reserves R, Boats B WHERE

S.sid = R.sid AND R.bid = B.bid AND B.color = 'red'

6. Find the colors of boats reserved by Lubber.

SELECT B.color FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND S.sname = 'Lubber'

7. Find the names of sailors who have reserved at least one boat.

SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid = R.sid

UNION, INTERSECT, AND EXCEPT

8. Find the names of sailors who have reserved a red or a green boat.

SELECT S.sname FROM Sailors S, Reserves R, Boats B WHERE

S.sid = R.sid AND R.bid = B.bid AND (B.color = 'red' OR B.color = 'green')

(Or)

SELECT S.sname FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid

AND R.bid = B.bid AND B.color = 'red'

UNION

SELECT S2.sname FROM Sailors S2, Boats B2, Reserves R2 WHERE S2.sid =

R2.sid AND R2.bid = B2.bid AND B2.color = 'green'

9. Find the names of sailors who have reserved both a red and a green boat.

SELECT S.sname FROM Sailors S, Reserves R1, Boats B1, Reserves R2, Boats

B2 WHERE S.sid = Rl.sid AND R1.bid = Bl.bid AND S.sid = R2.sid AND

R2.bid =B2.bid AND B1.color='red' AND B2.color = 'green'

(or)
SELECT S.snarne FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid
AND R.bid = B.bid AND B.color = 'red'

INTERSECT

SELECT S2.sname FROM Sailors S2, Boats B2, Reserves R2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = 'green'

.

(Q 19) Find the sids of all sailor's who have reserved red boats but not green

boats.

SELECT S.sid FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND

R.bid = B.bid AND B.color = 'red'

EXCEPT

SELECT S2.sid FROM Sailors S2, Reserves R2, Boats B2 WHERE

S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = 'green'

Nested Queries

A nested query is a query that has another query embedded within it; the embedded

query is called a suhquery. The embedded query can of course be a nested query

itself; thus queries that have very deeply nested structures are possible.

1. Find the names of sailors who have reserved boat 103.

SELECT S.sname FROM Sailors S WHERE S.sid IN (SELECT R.sid FROM

Reserves R WHERE R.bid = 103)

2. Find the names of sailors who have reserved a red boat.

SELECT S.sname FROM Sailors S WHERE S.sid IN

(SELECT R.sid FROM Reserves R WHERE R. bid IN

 (SELECT B.bid FROM Boats B WHERE B.color = 'red'))

3. Find the names of sailors who have not reserved a red boat.

SELECT S.sname FROM Sailors S WHERE S.sid NOT IN

 (SELECT R.sid FROM Reserves R WHERE R.bid IN

(SELECT B.bid FROM Boats B WHERE B.color = 'red'))

Correlated Nested Queries

In nested query subquery is executed only once but in correlated nested query sub
query is executed as many number of times as many rows are there in relation of
main query.

Q.Find the names of sailors who have reserved boat number 103.

SELECT S.sname FROM Sailors S WHERE EXISTS (SELECT * FROM
Reserves R WHERE R.bid = 103
AND R.sid = S.sid)

The EXISTS operator is another set comparison operator, such as IN. It allows us to test whether
a set is nonempty, an implicit comparison with the empty set. Thus, for each Sailor row 5, we
test whether the set of Reserves rows R such that R.bid = 103 AND S.sid = R.sid is nonempty.

Set-Comparison Operators

set-comparison operators are EXISTS, IN, and UNIQUE, along with their negated versions.
SQL also supports op ANY and op ALL, where op is one of the arithmetic comparison operators
{<, <=, =, <>, >=, >}.

AGGREGATE OPERATORS

SQL supports five aggregate operations, which can be applied on any column, say A, of a
relation:
1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.
2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.
3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.
4. MAX (A): The maximum value in the A column.
5. MIN (A): The minimum value in the A column.

NULL VALUES
SQL provides a special column value called null to use in situations when the column value is
either unknown or inapplicable.
Eg:- Suppose the Sailor table definition was modified to include a rnaiden-name column.
However, only married women who take their husband's last name have a maiden name. For

women who do not take their husband's name and for men, the rmaiden_name colun are

inapplicable.

Comparisons Using Null Values

An issue in the presence of 'null values is the definition of when two rows in a relation instance

are regarded as duplicates. The SQL definition is that two rows are duplicates if corresponding

columns are either equal, or both contain null. Contradiction to this definition with the fact that if

we compare two null values using =, the result is unknown! In the context of duplicates, this
comparison is implicitly treated as true, which is an anomaly.

SQL provides a special comparison operator ISNULL to fint out null value for a column.

Disallowing Null Values

We can disallow null values by specifying NOT NULL as part of the field definition; for
example, sname CHAR(20) NOT NULL. In addition, the fields in a primary key are not allowed
to take on null values. Thus, there is an implicit NOT NULL constraint for every field listed in a
PRIMARY KEY constraint.

JOINS

Here are the different types of the JOINs in SQL:

 (INNER) JOIN: Returns records that have matching values in both
tables

 LEFT (OUTER) JOIN: Return all records from the left table, and the
matched records from the right table

 RIGHT (OUTER) JOIN: Return all records from the right table, and the
matched records from the left table

 FULL (OUTER) JOIN: Return all records when there is a match in either

left or right table

Left outer join

The result of a left outer join (or simply left join) for tables A and B always contains all rows of the "left"

table (A), even if the join-condition does not find any matching row in the "right" table (B). This means

that if the ON clause matches 0 (zero) rows in B (for a given row in A), the join will still return a row in

the result (for that row)—but with NULL in each column from B. A left outer join returns all the values
from an inner join plus all values in the left table that do not match to the right table, including rows with
NULL (empty) values in the link column.

Right outer join

A right outer join (or right join) closely resembles a left outer join, except with the treatment of the

tables reversed. Every row from the "right" table (B) will appear in the joined table at least once. If no
matching row from the "left" table (A) exists, NULL will appear in columns from A for those rows that
have no match in B.

A right outer join returns all the values from the right table and matched values from the left table

(NULL in the case of no matching join predicate). For example, this allows us to find each employee
and his or her department, but still show departments that have no employees.

Full outer join[edit]

Conceptually, a full outer join combines the effect of applying both left and right outer joins. Where
rows in the FULL OUTER JOINed tables do not match, the result set will have NULL values for every
column of the table that lacks a matching row. For those rows that do match, a single row will be
produced in the result set (containing columns populated from both tables).

For example, this allows us to see each employee who is in a department and each department that
has an employee, but also see each employee who is not part of a department and each department
which doesn't have an employee.

https://en.wikipedia.org/w/index.php?title=Join_(SQL)&action=edit§ion=10

UNIT – 3

Normalisation or Schema Refinement or Database design

 Normalisation or Schema Refinement is a technique of organizing the data in the

database. It is a systematic approach of decomposing tables to eliminate data redundancy

and undesirable characteristics like Insertion, Update and Deletion Anomalies.

 The Schema Refinement refers to refine the schema by using some technique. The best

technique of schema refinement is decomposition.

 The Basic Goal of Normalisation is used to eliminate redundancy.

 Redundancy refers to repetition of same data or duplicate copies of same data stored in

different locations.

Normalization is used for mainly two purpose :

 Eliminating redundant(useless) data.

 Ensuring data dependencies make sense i.e data is logically stored.

Anomalies or Problems Facing without Normalisation :

Anomalies refers to the problems occurred after poorly planned and unnormalised databases

where all the data is stored in one table which is sometimes called a flat file database. Let us

consider such type of schema –

SID Sname CID Cname FEE

S1 A C1 C 5k

S2 A C1 C 5k

S1 A C2 C++ 10k

S3 B C2 C++ 10k

S3 B C3 JAVA 15k

Primary Key(SID,CID)

Here all the data is stored in a single table which causes redundancy of data or say anomalies as

SID and Sname are repeated once for same CID . Let us discuss anomalies one bye one.

Types of Anomalies : (Problems because of Redundancy)

There are three types of Anomalies produced in the database because of redundancy –

 Updation/Modification Anomaly

 Insertion Anomaly

 Deletion Anomaly

1. Problem in updation / updation anomaly – If there is updation in the fee from 5000 to

7000, then we have to update FEE column in all the rows, else data will become

inconsistent.

2. Insertion Anomaly and Deleteion Anomaly- These anamolies exist only due to

redundancy, otherwise they do not exist.

 Insertion Anomaly :

New course is introduced C4, But no student is there who is having C4 subject.

Because of insertion of some data, It is forced to insert some other dummy data.

3.

 Deletion Anomaly :

Deletion of S3 student cause the deletion of course.

https://i0.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/updation-anamoly1.png
https://i2.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/Insertion-Anamoly1.png

Because of deletion of some data forced to delete some other useful

data.

Deleting student S3 will permanently delete the course B.

Solutions To Anomalies : Decomposition of Tables – Schema
Refinement

http://www.edugrabs.com/wp-content/uploads/2015/06/Deletion-Anamoly.png
http://www.edugrabs.com/wp-content/uploads/2015/06/Deletion-Anamoly.png
http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png
http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png
https://i2.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/Deletion-Anamoly.png
https://i2.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png

There are some Anomalies in this again –

What is the Solution ??

Solution :

Functional dependency in DBMS
The attributes of a table is said to be dependent on each other when an attribute of a
table uniquely identifies another attribute of the same table.

For example: Suppose we have a student table with attributes: Stu_Id, Stu_Name,
Stu_Age. Here Stu_Id attribute uniquely identifies the Stu_Name attribute of student
table because if we know the student id we can tell the student name associated with
it. This is known as functional dependency and can be written as Stu_Id->Stu_Name or
in words we can say Stu_Name is functionally dependent on Stu_Id.

http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png
http://www.edugrabs.com/wp-content/uploads/2015/06/decomposition-of-tables.png
https://i0.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/Anamoly-again.png
https://i0.wp.com/www.edugrabs.com/wp-content/uploads/2015/06/Anamolies-Solution-again.png

Formally:
If column A of a table uniquely identifies the column B of same table then it can
represented as A->B (Attribute B is functionally dependent on attribute A)

Types of Functional Dependencies

 Trivial functional dependency
 non-trivial functional dependency
 Multivalued dependency
 Transitive dependency

Trivial functional dependency

The dependency of an attribute on a set of attributes is known as trivial functional dependency if

the set of attributes includes that attribute.

Symbolically: A ->B is trivial functional dependency if B is a subset of A.

The following dependencies are also trivial: A->A & B->B

For example: Consider a table with two columns Student_id and Student_Name.

{Student_Id, Student_Name} -> Student_Id is a trivial functional dependency as Student_Id is a

subset of {Student_Id, Student_Name}. That makes sense because if we know the values of

Student_Id and Student_Name then the value of Student_Id can be uniquely determined.

Also, Student_Id -> Student_Id & Student_Name -> Student_Name are trivial dependencies too.

Non trivial functional dependency

If a functional dependency X->Y holds true where Y is not a subset of X then this dependency is

called non trivial Functional dependency.

For example:

An employee table with three attributes: emp_id, emp_name, emp_address.

The following functional dependencies are non-trivial:

emp_id -> emp_name (emp_name is not a subset of emp_id)

emp_id -> emp_address (emp_address is not a subset of emp_id)

http://beginnersbook.com/2015/04/trivial-functional-dependency-in-dbms/
http://beginnersbook.com/2015/04/non-trivial-functional-dependency-in-dbms/
http://beginnersbook.com/2015/04/multivalued-dependency-in-dbms/
http://beginnersbook.com/2015/04/transitive-dependency-in-dbms/

On the other hand, the following dependencies are trivial:

{emp_id, emp_name} -> emp_name [emp_name is a subset of {emp_id, emp_name}]

Refer: trivial functional dependency.

Completely non trivial FD:

If a FD X->Y holds true where X intersection Y is null then this dependency is said to be

completely non trivial function dependency.

Multivalued dependency

Multivalued dependency occurs when there are more than one independent multivalued

attributes in a table.

For example: Consider a bike manufacture company, which produces two colors (Black and

white) in each model every year.

bike_model manuf_year color

M1001 2007 Black

M1001 2007 Red

M2012 2008 Black

M2012 2008 Red

http://beginnersbook.com/2015/04/trivial-functional-dependency-in-dbms/

M2222 2009 Black

M2222 2009 Red

Here columns manuf_year and color are independent of each other and dependent on

bike_model. In this case these two columns are said to be multivalued dependent on bike_model.

These dependencies can be represented like this:

bike_model ->> manuf_year

bike_model ->> color

Transitive dependency

A functional dependency is said to be transitive if it is indirectly formed by two functional

dependencies. For e.g.

X -> Z is a transitive dependency if the following three functional dependencies hold true:

 X->Y

 Y does not ->X

 Y->Z

Note: A transitive dependency can only occur in a relation of three of more attributes. This

dependency helps us normalizing the database in 3NF (3rdNormal Form).

Inference Rules

Armstrong’s axioms are a set of axioms (or, more precisely, inference rules) used to
infer all the functional dependencies on a relational database. They were developed by
William W. Armstrong.
Let R(U) be a relation scheme over the set of attributes U. We will use the letters X, Y, Z
to represent any subset of and, for short, the union of two sets of attributes and by
instead of the usual X U Y.

 The Armstrong's axioms are very intuitive

 Consider the relation:

 Employee-Department

 SSN fname lname DNO DName
 +-------------+----------+----------+----------+----------+

 | 111-11-1111 | John | Smith | 5 | Research |
 +-------------+----------+----------+----------+----------+
 | 222-22-2222 | Jane | Doe | 4 | Payroll |
 +-------------+----------+----------+----------+----------+
 | 333-33-3333 | Pete | Pan | 5 | Research |

 +-------------+----------+----------+----------+----------+

 Examples of Armostrong axioms:

1. Reflexivity rule: if Y ⊆ X then X → Y

 {fname, lname} → {fname}

 What it says is: if I see that same values for

{fname, lname}
 I must also see that same value for {fname} -
kinda obvious :-)

2. Augmentation rule: if X → Y then XZ → YZ

 If {SSN} → {fname} then: {SSN, DName} →

{fname, DName}

3. Transitivity rule: if X → Y and Y → Z then X → Z

If:

 {SSN} → {DNO}

 {DNO} → {DName}

Then also:

 {SSN} → {DName}

The Decomposition rule:

o if X → YZ then: X → Y and X → Z

Union rule:

o if X → Y and X → Z then: X → YZ

Psuedo transitivity rule:

o if X → Y and YW → Z then: XW → Z

How to Find Candidate Key using

Functional Dependencies –

In the previous post (How to Find Super Key from Functional Dependencies), we identify

all the superkeys using functional dependencies. To identify Candidate Key,

Let R be the relational schema, and X be the set of attributes over R. X+ determine all the

attributes of R, and therefore X is said to be superkey of R. If there are no superflous attributes in

the Super key, then it will be Candidate Key.

In short, a minimal Super Key is a Candidate Key.

Example/Question 1 : Let R(ABCDE) is a relational schema with following
functional dependencies. AB → C DE → B CD → E
Step 1: Identify the SuperKeys –

ACD, ABD, ADE, ABDE, ACDB, ACDE, ACDBE. {From Previous Post Eg.}

Step 2: Find minimal super key -

Neglecting the last four keys as they can be trimmed down, so, checking

the first three keys (ACD, ABD and ADE)

For SuperKey : ACD

(A)+ = {A} - {Not determine all attributes of R}

(C)+ = {C} - {Not determine all attributes of R}

(D)+ = {D} - {Not determine all attributes of R}

For SuperKey : ABD

(A)+ = {A} - {Not determine all attributes of R}

(B)+ = {B} - {Not determine all attributes of R}

(D)+ = {D} - {Not determine all attributes of R}

http://www.edugrabs.com/how-to-find-super-key-from-functional-dependencies/
http://www.edugrabs.com/how-to-find-super-key-from-functional-dependencies/

For SuperKey : ADE

(A)+ = {A} - {Not determine all attributes of R}

(D)+ = {D} - {Not determine all attributes of R}

(E)+ = {E} - {Not determine all attributes of R}

Hence none of proper sets of SuperKeys is not able to determine all attributes of

R, So ACD, ABD, ADE all are minimal superkeys or candidate keys.

Example/Question 2 : Let R(ABCDE) is a relational schema with following
functional dependencies - AB → C C → D B → EA Find Out the Candidate Key ?
Step 1: Identify the super key

(AB+) : {ABCDE} ⇒ Superkey
(C+) : {CD} ⇒ Not a Superkey
(B+) : {BEACD} ⇒ Superkey
So, Super Keys will be B, AB, BC, BD, BE, BAC, BAD, BAE, BCD, BCE, BDE,

BACD, BACE, BCDE, ABDE, ABCDE

Step 2: Find minimal super key -

Taking the first one key, as all other keys can be trimmed down -

(B+) : {EABCD} {determine all the attributes of R}

Since B is a minimal SuperKey ⇒ B is a Candidate Key.
So, the Candidate Key of R is - B.

Functional Dependency Set Closure

(F+)

Functional Dependency Set Closure of F is the set of all functional dependencies that are

determined by it.

Example of Functional Dependency Set Closure

:

Consider a relation R(ABC) having following functional dependencies :

F = { A → B, B → C }

To find the Functional Dependency Set closure of F+ :

(Φ)+ = {Φ}

 ⇒ Φ → Φ
 ⇒ 1 FD
(A)+ = {ABC}

 ⇒ A → Φ, A → A, A → B, A → C,
 A → BC, A → AB, A → AC, A → ABC

 ⇒ 8 FDs = (2)3

 ... where 3 is number of attributes in closure

(B)+ = {BC}

 ⇒ B → Φ, B → B, B → C, B → BC
 ⇒ 4 FDs = (2)2

(C)+ = {C}

 ⇒ C → Φ, C → C
 ⇒ 2 FDs = (2)1

(AB)+ = {ABC}

 ⇒ AB → Φ, AB → A, AB → B, AB → C,

 AB → AB, AB → BC, AB → AC, AB → ABC
 ⇒ 8 FDs = (2)3

(BC)+ = {BC}

 ⇒ BC → Φ, BC → B, BC → C, BC → BC
 ⇒ 4 FDs = (2)2

(AC)+ = {ABC}

 ⇒ AC → Φ, AC → A, AC → C, AC → C,
 AC → AC, AC → AB, AC → BC, AC → ABC
 ⇒ 8 FDs = (2)3

(ABC)+ = {ABC}

 ⇒ ABC → Φ, ABC → A, ABC → B, ABC → C,
 ABC → BC, ABC → AB, ABC → AC, ABC → ABC

 ⇒ 8 FDs = (2)3

So, the Functional Dependency Set Closure of (F)+ will be :

F+ = {

 Φ → Φ, A → Φ, A → A, A → B, A → C, A → BC, A → AB, A → AC, A → ABC,

 B → Φ, B → B, B → C, B → BC, C → Φ, C → C, AB → Φ, AB → A, AB → B,

 AB → C, AB → AB, AB → BC, AB → AC, AB → ABC, BC → Φ, BC → B,

 BC → C, BC → BC, AC → Φ, AC → A, AC → C, AC → C, AC → AC, AC → AB,

 AC → BC, AC → ABC, ABC → Φ, ABC → A, ABC → B, ABC → C, ABC → BC,

 ABC → AB, ABC → AC, ABC → ABC

 }

The Total FDs will be :

 1 + 8 + 4 + 2 + 8 + 4 + 8 + 8 = 43 FDs

Consider another relation R(AB) having following functional dependencies :

F = { A → B, B → A }

To find the Functional Dependency Set closure of F+ :

(Φ)+ = {Φ} ⇒ 1
(A)+ = {AB} ⇒ 4 = (2)2

(B)+ = {AB} ⇒ 4 = (2)2

(AB)+ = {AB} ⇒ 4 = (2)2

 Total = 13

First normal form

First normal form (1NF) is a property of a relation in a relational database. A relation is in first normal

form if and only if the domain of each attribute contains only atomic (indivisible) values, and the value

of each attribute contains only a single value from that domain.

Designs that Violate 1NF-Below is a table that stores the names and telephone numbers of

customers. One requirement though is to retain multiple telephone numbers for some customers.

The simplest way of satisfying this requirement is to allow the "Telephone Number" column in any

given row to contain more than one value:

Customer

Customer

ID

First

Name
Surname Telephone Number

123 Pooja Singh 555-861-2025, 192-122-1111

456 San Zhang
(555) 403-1659 Ext. 53; 182-929-

2929

789 John Doe 555-808-9633

Designs that Comply with 1NF-To bring the model into the first normal form, we split the

strings we used to hold our telephone number information into "atomic" (i.e. indivisible)

entities: single phone numbers. And we ensure no row contains more than one phone

number.

Customer

Customer ID First Name Surname Telephone Number

123 Pooja Singh 555-861-2025

123 Pooja Singh 192-122-1111

456 San Zhang 182-929-2929

456 San Zhang (555) 403-1659 Ext. 53

789 John Doe 555-808-9633

https://en.wikipedia.org/wiki/Relation_(database)
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Data_domain
https://en.wikipedia.org/wiki/Column_(database)
https://en.wikipedia.org/wiki/First_normal_form#Atomicity

Second normal form

A relation is in 2NF if it is in 1NF and no non-prime attribute is dependent on any proper subset of any

candidate key of the relation. A non-prime attribute of a relation is an attribute that is not a part of any

candidate key of the relation.

https://en.wikipedia.org/wiki/Non-prime_attribute
https://en.wikipedia.org/wiki/Functional_dependency
https://en.wikipedia.org/wiki/Proper_subset
https://en.wikipedia.org/wiki/Candidate_key

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

1

Transaction Processing

Recovery & Concurrency Control

What is a transaction

� A transaction is the basic logical unit of execution in an

information system. A transaction is a sequence of operations

that must be executed as a whole, taking a consistent (&

correct) database state into another consistent (& correct)

database state;

� A collection of actions that make consistent transformations of

system states while preserving system consistency

� An indivisible unit of processing
database in a

consistent state

database in a

consistent state

database may be

temporarily in an

inconsistent state

during execution

begin Transaction end Transactionexecution of Transaction

Account A Fred Bloggs £1000

Account B Sue Smith £0 Account B Sue Smith £500

Account A Fred Bloggs £500
Transfer £500

2

Desirable Properties of ACID Transactions

A Atomicity: a transaction is an atomic unit of processing and
it is either performed entirely or not at all

C Consistency Preservation: a transaction's correct execution
must take the database from one correct state to another

I Isolation/Independence: the updates of a transaction must
not be made visible to other transactions until it is committed
(solves the temporary update problem)

D Durability (or Permanency): if a transaction changes the
database and is committed, the changes must never be lost
because of subsequent failure

o Serialisability: transactions are considered serialisable if the
effect of running them in an interleaved fashion is equivalent
to running them serially in some order

Requirements for Database Consistency

� Concurrency Control
� Most DBMS are multi-user systems.

� The concurrent execution of many different transactions
submitted by various users must be organised such that
each transaction does not interfere with another transaction
with one another in a way that produces incorrect results.

� The concurrent execution of transactions must be such that
each transaction appears to execute in isolation.

� Recovery
� System failures, either hardware or software, must not result

in an inconsistent database

3

Transaction as a Recovery Unit

� If an error or hardware/software crash occurs between the begin and

end, the database will be inconsistent

� Computer Failure (system crash)

� A transaction or system error

� Local errors or exception conditions detected by the transaction

� Concurrency control enforcement

� Disk failure

� Physical problems and catastrophes

� The database is restored to some state from the past so that a correct

state—close to the time of failure—can be reconstructed from the past

state.

� A DBMS ensures that if a transaction executes some updates and then a

failure occurs before the transaction reaches normal termination, then

those updates are undone.

� The statements COMMIT and ROLLBACK (or their equivalent) ensure

Transaction Atomicity

Recovery

� Mirroring

� keep two copies of the database and maintain them simultaneously

� Backup

� periodically dump the complete state of the database to some form of

tertiary storage

� System Logging

� the log keeps track of all transaction operations affecting the values of

database items. The log is kept on disk so that it is not affected by

failures except for disk and catastrophic failures.

4

Recovery from Transaction Failures

Catastrophic failure

� Restore a previous copy of the database from archival backup

� Apply transaction log to copy to reconstruct more current state

by redoing committed transaction operations up to failure point

� Incremental dump + log each transaction

Non-catastrophic failure

� Reverse the changes that caused the inconsistency by undoing

the operations and possibly redoing legitimate changes which

were lost

� The entries kept in the system log are consulted during

recovery.

� No need to use the complete archival copy of the database.

Transaction States

� For recovery purposes the system needs to keep track of when a
transaction starts, terminates and commits.

� Begin_Transaction: marks the beginning of a transaction execution;

� End_Transaction: specifies that the read and write operations have ended and
marks the end limit of transaction execution (but may be aborted because of
concurrency control);

� Commit_Transaction: signals a successful end of the transaction. Any updates
executed by the transaction can be safely committed to the database and will not
be undone;

� Rollback (or Abort): signals that the transaction has ended unsuccessfully. Any
changes that the transaction may have applied to the database must be undone;

� Undo: similar to ROLLBACK but it applies to a single operation rather than to a
whole transaction;

� Redo: specifies that certain transaction operations must be redone to ensure
that all the operations of a committed transaction have been applied successfully
to the database;

5

Entries in the System Log

For every transaction a unique transaction-id is generated

by the system.

� [start_transaction, transaction-id]: the start of

execution of the transaction identified by transaction-id

� [read_item, transaction-id, X]: the transaction identified

by transaction-id reads the value of database item X.

Optional in some protocols.

� [write_item, transaction-id, X, old_value, new_value]:

the transaction identified by transaction-id changes the

value of database item X from old_value to new_value

� [commit, transaction-id]: the transaction identified by

transaction-id has completed all accesses to the

database successfully and its effect can be recorded

permanently (committed)

� [abort, transaction-id]: the transaction identified by

transaction-id has been aborted

Credit_labmark (sno

NUMBER, cno CHAR, credit

NUMBER)

old_mark NUMBER;

new_mark NUMBER;

SELECT labmark INTO

old_mark FROM enrol

WHERE studno = sno and

courseno = cno FOR UPDATE

OF labmark;

new_ mark := old_ mark +

credit;

UPDATE enrol SET labmark

= new_mark WHERE studno =

sno and courseno = cno ;

COMMIT;

EXCEPTION

WHEN OTHERS THEN

ROLLBACK;

END credit_labmark;

active partially
committed

committed

failed
terminated

BEGIN

TRANSACTION

READ, WRITE

END

TRANSACTION

ROLLBACK ROLLBACK

COMMIT

Transaction execution

A transaction reaches its commit point when all

operations accessing the database are completed

and the result has been recorded in the log. It then

writes a [commit, transaction-id].

If a system failure occurs, searching the log and rollback the transactions that

have written into the log a

[start_transaction, transaction-id]

[write_item, transaction-id, X, old_value, new_value]

but have not recorded into the log a [commit, transaction-id]

6

Read and Write Operations of a Transaction

� Specify read or write operations on the database items that are executed
as part of a transaction

� read_item(X):

� reads a database item named X into a program variable also named X.

1. find the address of the disk block that contains item X

2. copy that disk block into a buffer in the main memory

3. copy item X from the buffer to the program variable named

� write_item(X):

� writes the value of program variable X into the database item named X.

1. find the address of the disk block that contains item X

2. copy that disk block into a buffer in the main memory

3. copy item X from the program variable named X into its current location
in the buffer store the updated block in the buffer back to disk (this step
updates the database on disk)

XX:=

Checkpoints in the System Log

� A [checkpoint] record is written periodically into the
log when the system writes out to the database on
disk the effect of all WRITE operations of committed
transactions.

� All transactions whose [commit, transaction-id]
entries can be found in the system log will not require
their WRITE operations to be redone in the case of a
system crash.

� Before a transaction reaches commit point, force-
write or flush the log file to disk before commit
transaction.

� Actions Constituting a Checkpoint

� temporary suspension of transaction execution

� forced writing of all updated database blocks in main
memory buffers to disk

� writing a [checkpoint] record to the log and force writing
the log to disk

� resuming of transaction execution

data

log

7

“In place” updating protocols: Overwriting data in situ

Deferred Update:
� no actual update of the

database until after a

transaction reaches its

commit point

1. Updates recorded in log

2. Transaction commit point

3. Force log to the disk

4. Update the database

Immediate Update:
� the database may be updated

by some operations of a

transaction before it reaches its

commit point.

1. Update X recorded in log

2. Update X in database

3. Update Y recorded in log

4. Transaction commit point

3. Force log to the disk

4. Update Y in database
FAILURE!

REDO database from log

entries

No UNDO necessary because

database never altered

FAILURE!

UNDO X

FAILURE!

REDO Y

• Undo in reverse order in log

• Redo in committed log order

• uses the write_item log entry

Write Ahead Logging

Transaction as a Concurrency Unit

� Transactions must be synchronised correctly to

guarantee database consistency

Account A Fred Bloggs £1000

Account B Sue Smith £0

Account B Sue Smith £500

Account A Fred Bloggs £500

Transfer £500

from A to B

Account C Jill Jones £700
Account C Jill Jones £400

Account A Fred Bloggs £800

Transfer £300

from C to A

Net result

Account A 800

Account B 500

Account C 400

T1

T2

S
im

u
lta

n
e

o
u

s
 E

x
e

c
u

tio
n

8

Transaction scheduling algorithms

� Transaction Serialisability

� The effect on a database of any number of transactions

executing in parallel must be the same as if they were

executed one after another

� Problems due to the Concurrent Execution of

Transactions

� The Lost Update Problem

� The Incorrect Summary or Unrepeatable Read Problem

� The Temporary Update (Dirty Read) Problem

≡

The Lost Update Problem

� Two transactions accessing the same database item have their operations

interleaved in a way that makes the database item incorrect

� item X has incorrect value because its update from T1 is “lost” (overwritten)

� T2 reads the value of X before T1 changes it in the database and hence the

updated database value resulting from T1 is lost

T1: (joe) T2: (fred) X Y

read_item(X); 4
X:= X - N; 2

read_item(X); 4
X:= X + M; 7

write_item(X); 2
read_item(Y); 8

write_item(X); 7
Y:= Y + N; 10
write_item(Y); 10

X=4

Y=8

N=2

M=3

9

The Incorrect Summary or Unrepeatable Read Problem

� One transaction is calculating an aggregate summary function on a

number of records while other transactions are updating some of these

records.

� The aggregate function may calculate some values before they are

updated and others after.

T1: T2: T1 T2 Sum
sum:= 0; 0
read_item(A); 4
sum:= sum + A; 4

read_item(X);. . 4
X:= X - N; . 2
write_item(X); 2

read_item(X); 2
sum:= sum + X; 6
read_item(Y); 8
sum:= sum + Y; 14

read_item(Y); 8
Y:= Y + N; 10
write_item(Y); 10

T2 reads X

after N is

subtracted and

reads Y before

N is added, so

a wrong

summary is the

result

Dirty Read or The Temporary Update Problem

� One transaction updates a database item and then the transaction fails.

The updated item is accessed by another transaction before it is changed

back to its original value

� transaction T1 fails and must change the value of X back to its old value

� meanwhile T2 has read the “temporary” incorrect value of X

T1: (joe) T2: (fred) Database Log
old

Log
new

read_item(X); 4
X:= X - N; 2
write_item(X); 2 4 2

read_item(X); 2
X:= X- N; -1
write_item(X); -1 2 -1

failed write (X) 4 rollback T1
log

Joe books

seat on

flight X

Fred books seat on flight X

because Joe was on Flight X

Joe

cancels

10

Schedules of Transactions

� A schedule S of n transactions is a sequential

ordering of the operations of the n transactions.

� The transactions are interleaved

� A schedule maintains the order of operations within

the individual transaction.

� For each transaction T if operation a is performed in T

before operation b, then operation a will be performed

before operation b in S.

� The operations are in the same order as they were before

the transactions were interleaved

� Two operations conflict if they belong to different

transactions, AND access the same data item AND

one of them is a write.

read x

write x

read x

write x

read x

read x

write x

write x

T1

T2

S

Serial and Non-serial Schedules

� A schedule S is serial if, for every transaction T

participating in the schedule, all of T's operations are

executed consecutively in the schedule; otherwise it

is called non-serial.

� Non-serial schedules mean that transactions are

interleaved. There are many possible orders or

schedules.

� Serialisability theory attempts to determine the

'correctness' of the schedules.

� A schedule S of n transactions is serialisable if it is

equivalent to some serial schedule of the same n

transactions.

11

T1: T2:
read_item(X);
X:= X - N;
write_item(X);
read_item(Y);
Y:=Y + N;
write_item(Y);

read_item(X);
X:= X + M;
write_item(X);

T1: T2:
read_item(X);
X:= X + M;
write_item(X);

read_item(X);
X:= X - N;
write_item(X);
read_item(Y);
Y:=Y + N;
write_item(Y);

•Schedule B

Example of Serial Schedules

� Schedule A

T1: T2:
read_item(X);
X:= X - N;

read_item(X);
X:= X + M;

write_item(X);
read_item(Y);

write_item(X);
Y:=Y + N;
write_item(Y);

T1: T2:
read_item(X);
X:= X - N;
write_item(X);

read_item(X);
X:= X + M;
write_item(X);

read_item(Y);
Y:=Y + N;
write_item(Y);

Example of Non-serial Schedules

� Schedule C •Schedule D

We have to figure out whether a schedule is equivalent

to a serial schedule

i.e. the reads and writes are in the right order

12

Precedence graphs (assuming read X before write X)

T1: T2:
read_item(X);
X:= X - N;
write_item(X);
read_item(Y);
Y:=Y + N;
write_item(Y);

read_item(X);
X:= X + M;
write_item(X);

T1: T2:
read_item(X);
X:= X + M;
write_item(X);

read_item(X);
X:= X - N;
write_item(X);
read_item(Y);
Y:=Y + N;
write_item(Y);

T1: T2:
read_item(X);
X:= X - N;

read_item(X);
X:= X + M;

write_item(X);
read_item(Y);

write_item(X);
Y:=Y + N;
write_item(Y);

T1: T2:
read_item(X);
X:= X - N;
write_item(X);

read_item(X);
X:= X + M;
write_item(X);

read_item(Y);
Y:=Y + N;
write_item(Y);

View Equivalence and View Serialisability

� View Equivalence:
� As long as each read operation of a transaction reads the

result of the same write operation in both schedules, the
write operations of each transaction must produce the same
results.

� The read operations are said to see the same view in both
schedules

� The final write operation on each data item is the same in
both schedules, so the database state should be the same at
the end of both schedules

� A schedule S is view serialisable if it is view
equivalent to a serial schedule.

� Testing for view serialisability is NP-complete

13

Semantic Serialisability

� Some applications can produce schedules that are

correct but aren’t conflict or view serialisable.

� e.g. Debit/Credit transactions (Addition and

subtraction are commutative)

T1 T2
read_item(X); read_item(Y);
X:=X-10; Y:=Y-20;
write_item(X); write_item(Y);
read_item(Y); read_item(Z);
Y:=Y+10; Z:+Z+20;
write_item(Y); write_item(Z);

T1 T2
read_item(X);
X:=X-10;
write_item(X);

read_item(Y);
Y:=Y-20;
write_item(Y);

read_item(Y);
Y:=Y+10;
write_item(Y);

Schedule

Methods for Serialisability

� Multi-version Concurrency Control techniques keep the old

values of a data item when that item is updated.

� Timestamps are unique identifiers for each transaction and

are generated by the system. Transactions can then be

ordered according to their timestamps to ensure

serialisability.

� Protocols that, if followed by every transaction, will ensure

serialisability of all schedules in which the transactions

participate. They may use locking techniques of data items

to prevent multiple transactions from accessing items

concurrently.

� Pessimistic Concurrency Control

� Check before a database operation is executed by locking data items

before they are read and written or checking timestamps

14

Locking Techniques for Concurrency Control

� The concept of locking data items is one of the main
techniques used for controlling the concurrent
execution of transactions.

� A lock is a variable associated with a data item in the
database. Generally there is a lock for each data item
in the database.

� A lock describes the status of the data item with
respect to possible operations that can be applied to
that item. It is used for synchronising the access by
concurrent transactions to the database items.

� A transaction locks an object before using it

� When an object is locked by another transaction, the
requesting transaction must wait

Types of Locks

� Binary locks have two possible states:
1. locked (lock_item(X) operation) and

2. unlocked (unlock_item(X) operation

� Multiple-mode locks allow concurrent access to the
same item by several transactions. Three possible
states:
1. read locked or shared locked (other transactions are allowed

to read the item)

2. write locked or exclusive locked (a single transaction
exclusively holds the lock on the item) and

3. unlocked.

� Locks are held in a lock table.
� upgrade lock: read lock to write lock

� downgrade lock: write lock to read lock

15

Locks don’t guarantee serialisability: Lost Update

T1: (joe) T2: (fred) X Y

write_lock(X)
read_item(X); 4
X:= X - N; 2
unlock(X)

write_lock(X)
read_item(X); 4
X:= X + M; 7
unlock(X)

write_lock(X)
write_item(X); 2
unlock(X)
write_lock(Y)
read_item(Y); 8

write_lock(X)
write_item(X); 7
unlock(X)

Y:= Y + N; 10
write_item(Y); 10
unlock(Y)

X=20, Y=30

T1 T2
read_lock(Y); read_lock(X);
read_item(Y); read_item(X);
unlock(Y); unlock(X);
write_lock(X); write_lock(Y);
read_item(X); read_item(Y);
X:=X+Y; Y:=X+Y;
write_item(X); write_item(Y);
unlock(X); unlock(Y);

Y is unlocked too early
X is unlocked too early

Locks don’t guarantee serialisability

� Schedule 1: T1 followed by T2 ⇒ X=50, Y=80

� Schedule 2: T2 followed by T1 ⇒ X=70, Y=50

16

Non-serialisable schedule S that uses locks

T1 T2
read_lock(Y);
read_item(Y);
unlock(Y);

read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y:=X+Y;
write_item(Y);
unlock(Y);

write_lock(X);
read_item(X);
X:=X+Y;
write_item(X);
unlock(X);

result of S ⇒ X=50, Y=50

X=20

Y=30

Ensuring Serialisability: Two-Phase Locking

� All locking operations (read_lock, write_lock) precede the
first unlock operation in the transactions.

� Two phases:
� expanding phase: new locks on items can be acquired but none

can be released

� shrinking phase: existing locks can be released but no new ones
can be acquired

X=20, Y=30

T1 T2
read_lock(Y); read_lock(X);
read_item(Y); read_item(X);
write_lock(X); write_lock(Y);
unlock(Y); unlock(X);
read_item(X); read_item(Y);
X:=X+Y; Y:=X+Y;
write_item(X); write_item(Y);
unlock(X); unlock(Y);

17

Two-Phasing Locking

� Basic 2PL

� When a transaction releases a lock, it may not request another lock

� Conservative 2PL or static 2PL

� a transaction locks all the items it accesses before the transaction

begins execution

� pre-declaring read and write sets

obtain lock

release lock

lock point

Phase 1 Phase 2

BEGIN END

number

of locks

Two-Phasing Locking

� Strict 2PL a transaction does not release any of its

locks until after it commits or aborts

� leads to a strict schedule for recovery

obtain lock

release lock

BEGIN END

number

of locks

Transaction

durationperiod of data

item use

18

T1 T2
read_lock(Y);
read_item(Y);

read_lock(X);
read_item(X);

write_lock(X);
write_lock(Y);

Locking Problems: Deadlock

� Each of two or more transactions is waiting for the other to

release an item. Also called a deadly embrace

Deadlocks and Livelocks

� Deadlock prevention protocol:
� conservative 2PL

� transaction stamping (younger transactions aborted)

� no waiting

� cautious waiting

� time outs

� Deadlock detection (if the transaction load is light or
transactions are short and lock only a few items)

� wait-for graph for deadlock detection

� victim selection

� cyclic restarts

� Livelock: a transaction cannot proceed for an
indefinite period of time while other transactions in
the system continue normally.
� fair waiting schemes (i.e. first-come-first-served)

T1 T2

19

Locking Granularity

� A database item could be
� a database record

� a field value of a database record

� a disk block

� the whole database

� Trade-offs
� coarse granularity

� the larger the data item size, the lower the degree of
concurrency

� fine granularity

� the smaller the data item size, the more locks to be
managed and stored, and the more lock/unlock
operations needed.

Other Recovery and Concurrency Strategies

20

page 3

page 2

page 4

page 1

page 5

page 6

Recovery: Shadow Paging Technique

� Data isn’t updated ‘in place’

� The database is considered to

be made up of a number of n

fixed-size disk blocks or pages,

for recovery purposes.

� A page table with n entries is

constructed where the ith page

table entry points to the ith

database page on disk.

� Current page table points to

most recent current database

pages on disk

2
1

3
4
5
6

Database data

pages/blocks

Page table

page5(old)

page1

page4

page2(old)

page3

page6

page2(new)

page5(new)

2
1

3
4
5
6

Current page table
(after updatingpages
2,6)

Databasedatapages (blocks)

2
1

3
4
5
6

Shadowpage table
(not updated)

Shadow Paging Technique

� When a transaction

begins executing

� the current page table

is copied into a shadow

page table

� shadow page table is

then saved

� shadow page table is

never modified during

transaction execution

� writes operations—new

copy of database page

is created and current

page table entry

modified to point to

new disk page/block

21

Shadow Paging Technique

� To recover from a failure

� the state of the database before

transaction execution is available

through the shadow page table

� free modified pages

� discard currrent page table

� that state is recovered by

reinstating the shadow page table

to become the current page table

once more

� Commiting a transaction

� discard previous shadow page

� free old page tables that it

references

� Garbage collection

page5(old)

page1

page4

page2(old)

page3

page6

page2(new)

page5(new)

2

1

3

4

5

6

Current pagetable

(afterupdatingpages

2,6)

Databasedatapages(blocks)

2

1

3

4

5

6

Shadowpagetable
(notupdated)

Optimistic Concurrency Control

� No checking while the transaction is executing.

� Check for conflicts after the transaction.

� Checks are all made at once, so low transaction execution
overhead

� Relies on little interference between transactions
� Updates are not applied until end_transaction

� Updates are applied to local copies in a transaction space.

1. read phase: read from the database, but updates are applied only to
local copies

2. validation phase: check to ensure serialisability will not be validated if
the transaction updates are actually applied to the database

3. write phase: if validation is successful, transaction updates applied to
database; otherwise updates are discarded and transaction is aborted
and restarted.

22

Validation Phase

� Use transaction timestamps

� write_sets and read_sets maintained

� Transaction B is committed or in its validation phase

� Validation Phase for Transaction A

� To check that TransA does not interfere with TransB the

following must hold:

� TransB completes its write phase before TransA starts its reads

phase

� TransA starts its write phase after TransB completes its write phase,

and the read set of TransA has no items in common with the write

set of TransB

� Both the read set and the write set of TransA have no items in

common with the write set of TransB, and TransB completes its read

phase before TransA completes its read phase.

Conclusions

� Transaction management deals with two key

requirements of any database system:

� Resilience

� in the ability of data surviving hardware crashes and

software errors without sustaining loss or becoming

inconsistent

� Access Control

� in the ability to permit simultaneous access of data multiple

users in a consistent manner and assuring only authorised

access

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Storage Structure

Relative data and information is stored collectively in file formats. A file is a

sequence of records stored in binary format. A disk drive is formatted into

several blocks that can store records. File records are mapped onto those

disk blocks.

File Organization

File Organization defines how file records are mapped onto disk blocks. We

have four types of File Organization to organize file records −

Heap File Organization

When a file is created using Heap File Organization, the Operating System

allocates memory area to that file without any further accounting details.

File records can be placed anywhere in that memory area. It is the

responsibility of the software to manage the records. Heap File does not

support any ordering, sequencing, or indexing on its own.

Sequential File Organization

Every file record contains a data field (attribute) to uniquely identify that

record. In sequential file organization, records are placed in the file in some

sequential order based on the unique key field or search key. Practically, it

is not possible to store all the records sequentially in physical form.

Hash File Organization

Hash File Organization uses Hash function computation on some fields of

the records. The output of the hash function determines the location of disk

block where the records are to be placed.

Clustered File Organization

Clustered file organization is not considered good for large databases. In

this mechanism, related records from one or more relations are kept in the

same disk block, that is, the ordering of records is not based on primary

key or search key.

Indexing

We know that data is stored in the form of records. Every record has a key

field, which helps it to be recognized uniquely.

Indexing is a data structure technique to efficiently retrieve records from

the database files based on some attributes on which the indexing has been

done. Indexing in database systems is similar to what we see in books.

Indexing is defined based on its indexing attributes. Indexing can be of the

following types −

 Primary Index − Primary index is defined on an ordered data file. The data file

is ordered on a key field. The key field is generally the primary key of the

relation.

 Secondary Index − Secondary index may be generated from a field which is a

candidate key and has a unique value in every record, or a non-key with

duplicate values.

 Clustering Index − Clustering index is defined on an ordered data file. The

data file is ordered on a non-key field.

Ordered Indexing is of two types −

 Dense Index

 Sparse Index

Dense Index
In dense index, there is an index record for every search key value in the

database. This makes searching faster but requires more space to store

index records itself. Index records contain search key value and a pointer to

the actual record on the disk.

Sparse Index
In sparse index, index records are not created for every search key. An

index record here contains a search key and an actual pointer to the data

on the disk. To search a record, we first proceed by index record and reach

at the actual location of the data. If the data we are looking for is not where

we directly reach by following the index, then the system starts sequential

search until the desired data is found.

B+ Tree
A B+ tree is a balanced binary search tree that follows a multi-level index

format. The leaf nodes of a B+ tree denote actual data pointers. B+ tree

ensures that all leaf nodes remain at the same height, thus balanced.

Additionally, the leaf nodes are linked using a link list; therefore, a B+ tree

can support random access as well as sequential access.

Structure of B+ Tree

Every leaf node is at equal distance from the root node. A B+ tree is of the

order n where n is fixed for every B+ tree.

Internal nodes −

 Internal (non-leaf) nodes contain at least ⌈n/2⌉ pointers, except the root node.

 At most, an internal node can contain n pointers.

Leaf nodes −

 Leaf nodes contain at least ⌈n/2⌉ record pointers and ⌈n/2⌉ key values.

 At most, a leaf node can contain n record pointers and n key values.

 Every leaf node contains one block pointer P to point to next leaf node and forms

a linked list.

B+ Tree Insertion

 B+ trees are filled from bottom and each entry is done at the leaf node.

 If a leaf node overflows −

o Split node into two parts.

o Partition at i = ⌊(m+1)/2⌋.
o First i entries are stored in one node.

o Rest of the entries (i+1 onwards) are moved to a new node.

o ith key is duplicated at the parent of the leaf.

 If a non-leaf node overflows −

o Split node into two parts.

o Partition the node at i = ⌈(m+1)/2⌉.
o Entries up to i are kept in one node.

o Rest of the entries are moved to a new node.

B+ Tree Deletion

 B+ tree entries are deleted at the leaf nodes.

 The target entry is searched and deleted.

o If it is an internal node, delete and replace with the entry from the left

position.

 After deletion, underflow is tested,

o If underflow occurs, distribute the entries from the nodes left to it.

 If distribution is not possible from left, then

o Distribute from the nodes right to it.

 If distribution is not possible from left or from right, then

o Merge the node with left and right to it.

For a huge database structure, it can be almost next to impossible to search

all the index values through all its level and then reach the destination data

block to retrieve the desired data. Hashing is an effective technique to

calculate the direct location of a data record on the disk without using index

structure.

Hashing uses hash functions with search keys as parameters to generate

the address of a data record.

Hash Organization
 Bucket − A hash file stores data in bucket format. Bucket is considered a unit of

storage. A bucket typically stores one complete disk block, which in turn can

store one or more records.

 Hash Function − A hash function, h, is a mapping function that maps all the

set of search-keys K to the address where actual records are placed. It is a

function from search keys to bucket addresses.

Static Hashing
In static hashing, when a search-key value is provided, the hash function

always computes the same address. For example, if mod-4 hash function is

used, then it shall generate only 5 values. The output address shall always

be same for that function. The number of buckets provided remains

unchanged at all times.

Operation

 Insertion − When a record is required to be entered using static hash, the hash

function h computes the bucket address for search key K, where the record will

be stored.

Bucket address = h(K)

 Search − When a record needs to be retrieved, the same hash function can be

used to retrieve the address of the bucket where the data is stored.

 Delete − This is simply a search followed by a deletion operation.

Bucket Overflow
The condition of bucket-overflow is known as collision. This is a fatal state

for any static hash function. In this case, overflow chaining can be used.

 Overflow Chaining − When buckets are full, a new bucket is allocated for the

same hash result and is linked after the previous one. This mechanism is

called Closed Hashing.

 Linear Probing − When a hash function generates an address at which data is

already stored, the next free bucket is allocated to it. This mechanism is

called Open Hashing.

Dynamic Hashing
The problem with static hashing is that it does not expand or shrink

dynamically as the size of the database grows or shrinks. Dynamic hashing

provides a mechanism in which data buckets are added and removed

dynamically and on-demand. Dynamic hashing is also known as extended

hashing.

Hash function, in dynamic hashing, is made to produce a large number of

values and only a few are used initially.

Organization
The prefix of an entire hash value is taken as a hash index. Only a portion

of the hash value is used for computing bucket addresses. Every hash index

has a depth value to signify how many bits are used for computing a hash

function. These bits can address 2n buckets. When all these bits are

consumed − that is, when all the buckets are full − then the depth value is
increased linearly and twice the buckets are allocated.

Operation
 Querying − Look at the depth value of the hash index and use those bits to

compute the bucket address.

 Update − Perform a query as above and update the data.

 Deletion − Perform a query to locate the desired data and delete the same.

 Insertion − Compute the address of the bucket

o If the bucket is already full.

 Add more buckets.

 Add additional bits to the hash value.

 Re-compute the hash function.

o Else

 Add data to the bucket,

o If all the buckets are full, perform the remedies of static hashing.

Hashing is not favorable when the data is organized in some ordering and

the queries require a range of data. When data is discrete and random,

hash performs the best.

Hashing algorithms have high complexity than indexing. All hash operations

are done in constant time.

B - Trees

In a binary search tree, AVL Tree, Red-Black tree etc., every node can have
only one value (key) and maximum of two children but there is another type
of search tree called B-Tree in which a node can store more than one value
(key) and it can have more than two children. B-Tree was developed in the
year of 1972 by Bayer and McCreight with the name Height Balanced m-
way Search Tree. Later it was named as B-Tree.

B-Tree can be defined as follows...

B-Tree is a self-balanced search tree with multiple keys in every node
and more than two children for every node.

Here, number of keys in a node and number of children for a node is depend
on the order of the B-Tree. Every B-Tree has order.

B-Tree of Order m has the following properties...

 Property #1 - All the leaf nodes must be at same level.
 Property #2 - All nodes except root must have at least [m/2]-1 keys

and maximum of m-1 keys.
 Property #3 - All non leaf nodes except root (i.e. all internal nodes)

must have at least m/2 children.
 Property #4 - If the root node is a non leaf node, then it must have at

least 2 children.
 Property #5 - A non leaf node with n-1 keys must have n number of

children.
 Property #6 - All the key values within a node must be in Ascending

Order.

For example, B-Tree of Order 4 contains maximum 3 key values in a node
and maximum 4 children for a node.

Example

http://btechsmartclass.com/DS/U5_T4.html

Operations on a B-Tree

The following operations are performed on a B-Tree...

1. Search
2. Insertion
3. Deletion

Search Operation in B-Tree

In a B-Ttree, the search operation is similar to that of Binary Search Tree. In
a Binary search tree, the search process starts from the root node and every
time we make a 2-way decision (we go to either left subtree or right
subtree). In B-Tree also search process starts from the root node but every
time we make n-way decision where n is the total number of children that
node has. In a B-Ttree, the search operation is performed with O(log n) time
complexity. The search operation is performed as follows...

 Step 1: Read the search element from the user

 Step 2: Compare, the search element with first key value of root node

in the tree.

 Step 3: If both are matching, then display "Given node found!!!" and

terminate the function

 Step 4: If both are not matching, then check whether search element

is smaller or larger than that key value.

 Step 5: If search element is smaller, then continue the search process

in left subtree.

 Step 6: If search element is larger, then compare with next key value

in the same node and repeate step 3, 4, 5 and 6 until we found exact

match or comparision completed with last key value in a leaf node.

 Step 7: If we completed with last key value in a leaf node, then

display "Element is not found" and terminate the function.

Insertion Operation in B-Tree

In a B-Tree, the new element must be added only at leaf node. That means,
always the new keyValue is attached to leaf node only. The insertion

operation is performed as follows...

 Step 1: Check whether tree is Empty.

 Step 2: If tree is Empty, then create a new node with new key value

and insert into the tree as a root node.

 Step 3: If tree is Not Empty, then find a leaf node to which the new

key value cab be added using Binary Search Tree logic.

 Step 4: If that leaf node has an empty position, then add the new key

value to that leaf node by maintaining ascending order of key value

within the node.

 Step 5: If that leaf node is already full, then split that leaf node by

sending middle value to its parent node. Repeat tha same until

sending value is fixed into a node.

 Step 6: If the spilting is occuring to the root node, then the middle

value becomes new root node for the tree and the height of the tree is

increased by one.

Example

Construct a B-Tree of Order 3 by inserting numbers from 1 to 10.

← Previous

http://btechsmartclass.com/DS/U5_T2.html
http://btechsmartclass.com/DS/U5_T2.html

Overview of Storage and Indexing

 1

Data on External Storage

 Disks: Can retrieve random page at fixed cost
 But reading several consecutive pages is much cheaper than

reading them in random order

 Tapes: Can only read pages in sequence
 Cheaper than disks; used for archival storage

 File organization: Method of arranging a file of records
on external storage.

 Record id (rid) is sufficient to physically locate record
 Indexes are data structures that allow us to find the record ids of

records with given values in index search key fields

 Architecture: Buffer manager stages pages from external
storage to main memory buffer pool. File and index
layers make calls to the buffer manager. Page: typically
4 Kbytes.

 2

Alternative File Organizations

Many alternatives exist, each ideal for some

situations, and not so good in others:
 Heap (random order) files: Suitable when typical

access is a file scan retrieving all records.

 Sorted Files: Best if records must be retrieved in
some order, or only a `range’ of records is needed.

 Indexes: Data structures to organize records via
trees or hashing.

• Like sorted files, they speed up searches for a subset of
records, based on values in certain (“search key”) fields

• Updates are much faster than in sorted files.

 3

Indexes

 An index on a file speeds up selections on the
search key fields for the index.

 Any subset of the fields of a relation can be the
search key for an index on the relation.

 Search key is not the same as key (minimal set of
fields that uniquely identify a record in a relation).

 An index contains a collection of data entries,
and supports efficient retrieval of all data
entries k* with a given key value k.

 4

Index Classification

 Primary vs. secondary: If search key contains
primary key, then called primary index.

 Unique index: Search key contains a candidate key.

 Clustered vs. unclustered: If order of data records
is the same as order of data entries, then called
clustered index.

 A file can be clustered on at most one search key.

 Cost of retrieving data records through index varies
greatly based on whether index is clustered or not!

 5

Index Classification

 Dense vs Sparse: If there is an entry in the index
for each key value -> dense index (unclustered
indices are dense). If there is an entry for each
page -> sparse index.

1

5

..

..

Brown

Chen

Peterson

Rhodes

Smith

Yu

White

6

Clustered vs. Unclustered Index

 To build clustered index, first sort the Heap file (with
some free space on each page for future inserts).
 Overflow pages may be needed for inserts. (Thus, order of

data recs is `close to’, but not identical to, the sort order.)

CLUSTERED
Index entries
direct search for
data entries

UNCLUSTERED

Data entries Data entries

(Index File)

 (Data file)

Data Records Data Records
 7

Example B+ Tree
Root

Entries <= 17 Entries > 17

5

13

27

30

2* 3*

5* 7* 8*

14* 16*

22
*

24*

27* 29*

33* 34* 38* 39*

 Good for range queries.
 Insert/delete: Find data entry in leaf, then

change it. Need to adjust parent sometimes.
All leaves at he same height.

Hash-Based Indexes

 Good for equality selections.
• Index is a collection of buckets. Bucket = primary

page plus zero or more overflow pages.

• Hashing function h: h(r) = bucket in which record
r belongs. h looks at the search key fields of r.

 Buckets may contain the data records or just
the rids.

 Hash-based indexes are best for equality
selections. Cannot support range searches

 9

Static Hashing

primary pages fixed, allocated sequentially, never de-allocated;
overflow pages if needed.

h(k) mod N = bucket to which data entry with key k belongs. (N =
of buckets)

Long overflow chains can develop and degrade performance.

Extendible and Linear Hashing: Dynamic techniques to fix this.

h(key) mod N

key
h

0

2

N-1

Primary bucket pages Overflow pages

 10

Static Hashing (Contd.)

 Buckets contain data entries.

 Hash fn works on search key field of record r. Must
distribute values over range 0 ... M-1.

 h(key) = (a * key + b) usually works well.

 a and b are constants; lots known about how to tune h.

 11

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:

 B: The number of data pages

 R: Number of records per page

 D: (Average) time to read or write disk page

 Measuring number of page I/O’s ignores gains of
pre-fetching a sequence of pages; thus, even I/O
cost is only approximated.

 Average-case analysis; based on several simplistic
assumptions.

Good enough to show the overall trends!

 12

Comparing File Organizations

Heap files (random order; insert at eof)

Sorted files, sorted on <age, sal>

Clustered B+ tree file, Alternative (1), search
key <age, sal>

Heap file with unclustered B + tree index on
search key <age, sal>

Heap file with unclustered hash index on
search key <age, sal>

 13

Choice of Indexes What indexes should we

create?
 One approach: Consider the most important queries

in turn. Consider the best plan using the current
indexes, and see if a better plan is possible with an
additional index. If so, create it.
 Obviously, this implies that we must understand how a

DBMS evaluates queries and creates query evaluation plans!

 For now, we discuss simple 1-table queries.

 Before creating an index, must also consider the
impact on updates in the workload!

 Trade-off: Indexes can make queries go faster, updates
slower. Require disk space, too.

Index Selection Guidelines

 Attributes in WHERE clause are candidates for index keys.
 Exact match condition suggests hash index.

 Range query suggests tree index.
• Clustering is especially useful for range queries; can also help on

equality queries if there are many duplicates.

 Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.

 Try to choose indexes that benefit as many queries as
possible. Since only one index can be clustered per relation,
choose it based on important queries that would benefit the
most from clustering.

 17

Examples of Clustered Indexes

 B+ tree index on E.age can be used
to get qualifying tuples.

 How selective is the condition?

SELECT E.dno
FROM Emp E
WHERE E.age>40

 Is the index clustered?

 Consider the GROUP BY query. FROM Emp E
 If many tuples have E.age > 10, using HERE E.age>10

E.age index and sorting the retrieved ROUP BY E.dno

tuples may be costly.

 Clustered E.dno index may be better!

 Equality queries and duplicates:
 Clustering on E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

18

Indexes with Composite Search Keys

 Composite Search Keys: Search Examples of composite key

on a combination of fields.

Equality query: Every field
value is equal to a constant
value. E.g. wrt <sal,age> index:

• age=20 and sal =75

Range query: Some field value
is not a constant. E.g.:

• age =20; or age=20 and sal > 10

 Data entries in index sorted
by search key to support
range queries.

11,80

12,10

12,20

13,75

<age, sal>

10,12

20,12

75,13

80,11

<sal, age>

name age sal

bob 12 10

cal 11 80

joe 12 20

sue 13 75

Data records
sorted by name

11

12

12

13

<age>

10

20

75

80

<sal>

 Order or attributes is
relevant.

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

19

Composite Search Keys

 To retrieve Emp records with age=30 AND sal=4000,
an index on <age,sal> would be better than an index
on age or an index on sal.

 Choice of index key orthogonal to clustering etc.

 If condition is: 20<age<30 AND 3000<sal<5000:

 Clustered tree index on <age,sal> or <sal,age> is best.

 If condition is: age=30 AND 3000<sal<5000:

 Clustered <age,sal> index much better than <sal,age>
index!

 Composite indexes are larger, updated more often.

 20

Summary

 Data entries can be actual data records, <key,
rid> pairs, or <key, rid-list> pairs.

 Choice orthogonal to indexing technique used to
locate data entries with a given key value.

 Can have several indexes on a given file of
data records, each with a different search key.

 Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and
dense vs. sparse. Differences have important
consequences for utility/performance.

 21

 Understanding the nature of the workload for the
application, and the performance goals, is essential
to developing a good design.

 What are the important queries and updates? What
attributes/relations are involved?

 Indexes must be chosen to speed up important
queries (and perhaps some updates!).

 Index maintenance overhead on updates to key fields.

 Choose indexes that can help many queries, if possible.

 Build indexes to support index-only strategies.
 Clustering is an important decision; only one index on a

given relation can be clustered!

 Order of fields in composite index key can be important.

1

K. Dincer Chapter 5 - File Organization

and Processing

1

Chapter 5 - Tree Indexes

Given a dynamic file (many insertions and deletions)

we would like to do frequent independent fetches, consider

� an unsorted file

� a sorted file

� having an index (look up table)

Inverted Files:

� A simplest index structure that is in the form of an ordered list

where each each entry is a (key, ptr) pair.

� difficult to maintain

– After insertion and deletions, whole file needs to be shifted.

Most DBMSs use B+-trees and hash table utilities.

� we must learn how they work and what performance to expect.

K. Dincer Chapter 5 - File Organization

and Processing

2

ISAM (Indexed Sequentia l Access

Method)

� the most extensively used indexing method in last decade.

� mostly promoted by IBM and INGRES DBMS, but obsolete today.

� ISAM is simple and efficient as long as no new records are added

It contains

– a memory-resident cylinder index that keeps the highest valued key

for each cylinder

– each cylinder contains an index that keeps the highest valued key

for each block

1 1001

cylinder

high

value

2 2878

cylinder
high

value
. . .

memory-resident

cylinder index

1 100

block

high

value

2 170

block
high

value
. . .

index at

cylinder 1

K. Dincer Chapter 5 - File Organization

and Processing

3

TF = r + s + btt + r + btt

Tx = same as the sorted file
(Actually a little bit longer since some space left on each cylinder for overflow.)

Disadvantages of ISAM:

� As new records are added, the ISAM file degrades in performance.

� It has to be reorganized at high cost.

Time to fetch the

index on cylinder

Time to fetch

correct block

K. Dincer Chapter 5 - File Organization

and Processing

4

Overflow Chains in ISAM

� We start with some empty tracks in each cylinder for overflow

� When a new record is added, old records are shifted to make place for

the new one.

� The record which had the largest key in the block is moved to the

overflow area.

� When the overflow area fills up, overflow is written to another cylinder

� Eventually the performance gets very slow.

Performance
� performance gets really poor when the distribution of new records could

not be predicted in advance - very long overflow chains may occur

� With good prediction, enough space can be reserved in areas which

are expected to grow

K. Dincer Chapter 5 - File Organization

and Processing

5

B+-Trees

� Most used indexing method today.

� In B+-Trees:

– nodes tend to have over 100 children

– all leaves are on the same level

– leaves contain the actual pointers to data on disk

Any indexing structure which supports an ordering on a

large file is likely to be implemented by a B+-tree.

– we can make efficient range queries.

� We shall show how a B+-tree can be used as a secondary or

primary indexing method.

� We will look at the costs of fetching, sequential operations, and

insertion/deletion.

K. Dincer Chapter 5 - File Organization

and Processing

6

Structure of a B+-Tree

Index Entries

(Direct Search)

Data Entries

(“Sequence Set”)

Index File

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Example of a B+-Tree, Order v = 2

2

K. Dincer Chapter 5 - File Organization

and Processing

7

Definit ion of a B+-Tree of Order v

� The root has at least two children unless it is a leaf.

� No internal node has more than 2v keys.

– Root may have less keys

– Internal nodes contain only keys and addresses of nodes on

the next lower level.

� All leaves are on the same level.

– When B+-tree is used as a primary index, the leaves contain

the data records.

– When B+-tree is used as a secondary index, the leaves

contain the keys and record addresses.

� An internal node with k keys has k +1 children.

Bucket factor (Bkfr) : the # records that can fit in a leaf node.

Fan-out: the average # children of an internal node.

K. Dincer Chapter 5 - File Organization

and Processing

8

� B+-trees are short and wide.

� The records take up more space than the keys and

addresses.

– Typically internal nodes carry on 100-200 keys, leaves carry

on 15 records.

� A primary index determines the way the records are

actually stored.

� Clustering index: records are stored together in

buckets acc.to the values of the key.

– The records in a given bucket will have nearby key values.

– The index only note the lowest or the highest key in a given

bucket.

� For this reason, clustering index, is often called a sparse

index (e.g., ISAM, a B+-tree with data in the leaves)

K. Dincer Chapter 5 - File Organization

and Processing

9

� A B+-tree can also be used for a secondary index.

– The records in the file are not grouped in buckets according

to the keys of secondary indexes.

– A secondary index is also a dense index where an entry

exists for each record in the file (e.g., a B+-tree where

leaves contain keys and addresses of records)

� There may be many secondary indexes for the same

file.

� Why not have a secondary index on each field in the file?

– this would need repeating all the information in the file in the

leaves of the trees.

– with many indexes, update costs becomes high.

	Here we Discuss only DDL and DML
	Relationship and Relationship Set :
	Notation to Represent Relation Type in ER Diagram-
	Degree of a Relationship Type-
	Role Names-

	Recursive Relationship
	 Notations of Different Types of Cardinality In ER Diagram –

	How to Draw ER Diagram ??
	Steps - How to Draw ER Diagram -
	Need of ER Diagram -
	Example of drawing ER Diagram -

	Normalisation or Schema Refinement or Database design
	Anomalies or Problems Facing without Normalisation :
	Types of Anomalies : (Problems because of Redundancy)
	Solutions To Anomalies : Decomposition of Tables – Schema Refinement
	There are some Anomalies in this again –
	What is the Solution ?? Solution :

	Functional dependency in DBMS
	Types of Functional Dependencies

	Trivial functional dependency
	Non trivial functional dependency
	Multivalued dependency
	Inference Rules
	How to Find Candidate Key using Functional Dependencies –

	Functional Dependency Set Closure (F+)
	Example of Functional Dependency Set Closure :

	First normal form
	Designs that Violate 1NF-Below is a table that stores the names and telephone numbers of customers. One requirement though is to retain multiple telephone numbers for some customers. The simplest way of satisfying this requirement is to allow the "Tel...
	Designs that Comply with 1NF-To bring the model into the first normal form, we split the strings we used to hold our telephone number information into "atomic" (i.e. indivisible) entities: single phone numbers. And we ensure no row contains more than ...

	Second normal form
	File Organization
	Heap File Organization
	Sequential File Organization
	Hash File Organization
	Clustered File Organization
	Dense Index
	Sparse Index
	B+ Tree
	Structure of B+ Tree
	B+ Tree Insertion
	B+ Tree Deletion

	Hash Organization
	Static Hashing
	Operation

	Bucket Overflow
	Dynamic Hashing
	Organization
	Operation
	B - Trees
	Example
	Operations on a B-Tree
	Search Operation in B-Tree
	Insertion Operation in B-Tree
	Example (1)

