
DESIGN AND ANALYSIS OF ALGORITHMS

Dr. N. Subhash Chandra

Course Objectives

 Upon completion of this course, students will be able to do the following:

1. Analyze the asymptotic performance of algorithms.
2. To understand how the choice of data structures and algorithm design methods

impacts the performance of programs.
3. To solve problems using algorithm design methods such as the greedy method,

divide and conquer, dynamic programming, backtracking and branch and bound

Course Outcomes

CO 1: Analyze algorithms, improve the efficiency of algorithms and ability to understand

and
 estimate the performance of algorithm.

CO 2: Choose the appropriate data structure and algorithms design method for a specified

 application.

CO 3: Apply different designing methods for development of algorithms to realistic problem,

 such as divide-and-conquer, greedy algorithms, synthesize divide-and-conquer,
greedy
 algorithms, and analyze them.

CO 4: Describe the dynamic-programming, backtracking paradigm and explain when an
 algorithm design situation calls for it. Recite algorithms that employ these
paradigms.

CO 5: Synthesize dynamic-programming, backtracking algorithms, and analyze them. To
 apply algorithm design paradigms for complex problems and solve novel problems,
 by choosing the appropriate algorithm design technique for their solution and

justify
 their selection.

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 1

Unit - 1

Year and Semester: IIyr &II Sem
A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Algorithm, pseudo code for expressing algorithms. CO1

Definition: An algorithm is a sequence of unambiguous instructions for solving a problem.

It is a step by step procedure with the input to solve the problem in a finite amount of time

to obtain the required output.

Characteristics of an algorithm:

 Every algorithm must be satisfied the following characteristics.

Input : Zero / more quantities are externally supplied.

Output : At least one quantity is produced.

Definiteness : Each instruction is clear and unambiguous.

Finiteness : If the instructions of an algorithm is traced then for all cases the algorithm

must terminates after a finite number of steps.

Efficiency : Every instruction must be very basic and runs in short time with effective

results better than human computations.

Pseudo code for Expressing Algorithms:

1. An algorithm is a procedure. It has two parts; the first part is head and the second part is

body.

2. The Head section consists of keyword Algorithm and Name of the algorithm with

parameter list.

E.g. Algorithm name1(p1, p2,…,p3)

The head section also has the following:

//Problem Description:

//Input:

//Output:

3. In the body of an algorithm various programming constructs like if, for, while and some

statements like assignments are used.

4. The compound statements may be enclosed with { and } brackets. if, for, while can be

open and closed by {, } respectively. Proper indention is must for block.

5. Comments are written using // at the beginning.

6. The identifier should begin by a letter and not by digit. It contains alpha numeric letters

after first letter. No need to mention data types.

7. The left arrow “:=” used as assignment operator. E.g. v:=10

8. Boolean operators (TRUE, FALSE), Logical operators (AND, OR, NOT) and Relational

operators (<,<=, >, >=,=, ≠, <>) are also used.

9. Input and Output can be done using read and write.

10. Array[], if then else condition, branch and loop can be also used in algorithm.

Example:

The greatest common divisor(GCD) of two nonnegative integers m and n (not-both-

zero,m<=n), denoted gcd(m, n), is defined as the largest integer that divides both m and n

evenly, i.e., with a remainder of zero.

Euclid’s algorithm is based on applying repeatedly the equality gcd(m, n) = gcd(n, m mod

n), where m mod n is the remainder of the division of m by n, until m mod n is equal to 0.

Since gcd(m,0) = m, the last value of m is also the greatest common divisor of the initial m

and n.

gcd(60, 24) can be computed as follows:gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12.

Euclid’s algorithm for computing gcd(m, n) in simple steps

Step 1 If n = 0, return the value of m as the answer and stop; otherwise, proceed to Step

2.

Step 2 Divide m by n and assign the value of the remainder to r.

Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

Euclid’s algorithm for computing gcd(m, n) expressed in pseudocode

ALGORITHM Euclid_gcd(m, n)

{

//Computes gcd(m, n) by Euclid’s algorithm

//Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n ≠ 0 do

{

r := m mod n;

m:=n;

n:=r;

}

return m;

}

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 2

Unit - 1

Year and Semester: IIyr &II Sem
A

Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr.N. Subhash Chandra, Professor of CSE

Fundamentals Algorithm, Problem Solving: CO1

(i) Understanding the Problem

 This is the first step in designing of algorithm.

 Read the problem’s description carefully to understand the problem statement

completely.

 Ask questions for clarifying the doubts about the problem.

 Identify the problem types and use existing algorithm to find solution.

 Input (instance) to the problem and range of the input get fixed.

(ii) Decision making

The Decision making is done on the following:

(a) Ascertaining the Capabilities of the Computational Device

1. In random-access machine (RAM), instructions are executed one after

another (The central assumption is that one operation at a time).

Accordingly, algorithms designed to be executed on such machines are

called sequential algorithms.

2. In some newer computers, operations are executed concurrently, i.e.,

in parallel. Algorithms that take advantage of this capability are called

parallel algorithms.

3. Choice of computational devices like Processor and memory is mainly

based on space and time efficiency

(b) Choosing between Exact and Approximate Problem Solving

i. The next principal decision is to choose between solving the problem

exactly or solving it approximately.

ii. An algorithm used to solve the problem exactly and produce correct

result is called an exact algorithm.

iii. If the problem is so complex and not able to get exact solution, then

we have to choose an algorithm called an approximation algorithm.

i.e., produces an approximate answer. E.g., extracting square roots,

solving nonlinear equations, and evaluating definite integrals.

(c) Algorithm Design Techniques

1. An algorithm design technique (or “strategy” or “paradigm”) is a

general approach to solving problems algorithmically that is applicable

to a variety of problems from different areas of computing.

2. Algorithms+ Data Structures = Programs

3. Though Algorithms and Data Structures are independent, but they are

combined to develop program. Hence the choice of proper data

structure is required before designing the algorithm.

4. Implementation of algorithm is possible only with the help of

Algorithms and Data Structures

5. Algorithmic strategy / technique / paradigm is a general approach by

which many problems can be solved algorithmically. E.g., Brute Force,

Divide and Conquer, Dynamic Programming, Greedy Technique and so

on.

(iii) Methods of Specifying an Algorithm

There are three ways to specify an algorithm. They are:

a. Natural language

b. Pseudocode

c. Flowchart

Pseudocode and flowchart are the two options that are most widely used nowadays

for specifying algorithms.

a. Natural Language

It is very simple and easy to specify an algorithm using natural language. But

many times, specification of algorithm by using natural language is not clear

and thereby we get brief specification.

b. Pseudocode

Pseudocode is a mixture of a natural language and programming language

constructs. Pseudocode is usually more precise than natural language.

c. Flowchart

In the earlier days of computing, the dominant method for specifying

algorithms was a flowchart, this representation technique has proved to be

inconvenient. Flowchart is a graphical representation of an algorithm. It is a method

of expressing an algorithm by a collection of connected geometric shapes containing

descriptions of the algorithm’s steps.

(iv) Proving an Algorithm’s Correctness

Once an algorithm has been specified then its correctness must be proved.

An algorithm must yields a required result for every legitimate input in a finite

amount of time.

Example: Addition of a and b

Start

Input the value of a;

Input the value of b;

c: = a + b;

Display the value of c;

Stop

 (v) Analyzing an Algorithm

For an algorithm the most important is efficiency. In fact, there are two kinds of algorithm

efficiency. They are:

Time efficiency, indicating how fast the algorithm runs, and

Space efficiency, indicating how much extra memory it uses.

The efficiency of an algorithm is determined by measuring both time efficiency and

space efficiency.

So factors to analyze an algorithm are:

1. Time efficiency of an algorithm

2. Space efficiency of an algorithm

3. Simplicity of an algorithm

4. Generality of an algorithm

(vi) Coding an Algorithm

language

like C, C++, JAVA.

1. The transition from an algorithm to a program can be done either incorrectly

or very inefficiently. Implementing an algorithm correctly is necessary. The

Algorithm power should not reduced by inefficient implementation.

2. Standard tricks like computing a loop’s invariant (an expression that does not

change its value) outside the loop, collecting common subexpressions,

replacing expensive operations by cheap ones, selection of programming

language and so on should be known to the programmer.

3. Typically, such improvements can speed up a program only by a constant

factor, whereas a better algorithm can make a difference in running time by

orders of magnitude. But once an algorithm is selected, a 10–50% speedup

may be worth an effort.

4. It is very essential to write an optimized code (efficient code) to reduce the

burden of

5. compiler.

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 3

Unit - 1

Year and Semester: IIyr &II Sem
A

Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr.N. Subhash Chandra, Professor of CSE

Performance Analysis: CO1

The efficiency of an algorithm can be in terms of time and space. The algorithm

efficiency can be analyzed by the following ways.

a) Analysis Framework.

b) Asymptotic Notations and its properties.

c) Mathematical analysis for Recursive algorithms.

d) Mathematical analysis for Non-recursive algorithms.

a) Analysis Framework: There are two kinds of efficiencies to analyze the efficiency

of any algorithm. They are:

Time efficiency, indicating how fast the algorithm runs, and

Space efficiency, indicating how much extra memory it uses.

The algorithm analysis framework consists of the following:

i. Measuring an Input’s Size

ii. Units for Measuring Running Time

iii. Orders of Growth

iv. Worst-Case, Best-Case, and Average-Case Efficiencies

i) Measuring an Input’s Size: An algorithm’s efficiency is defined as a function of

some parameter n indicating the algorithm’s input size. In most cases,

selecting such a parameter is quite straightforward.

For example, it will be the size of the list for problems of sorting,

searching. For the problem of evaluating a polynomial p(x) = anx
n + . . . + a0

of degree n, the size of the parameter will be the polynomial’s degree or the

number of its coefficients, which is larger by 1 than its degree.

In computing the product of two n × n matrices, the choice of a

parameter indicating an input size does matter.

Consider a spell-checking algorithm. If the algorithm examines

individual characters of its input, then the size is measured by the number of

characters.

In measuring input size for algorithms solving problems such as checking

primality of a positive integer n. the input is just one number.

The input size by the number b of bits in the n’s binary representation is

b=(log2 n)+1.

(ii) Units for Measuring Running Time : Some standard unit of time measurement

such as a second, or millisecond, and so on can be used to measure the running time

of a program after implementing the algorithm.

Drawbacks

a) Dependence on the speed of a computer.

b) Dependence on the quality of a program implementing the algorithm.

c) The compiler used in generating the machine code.

d) The difficulty of clocking the actual running time of the program.

So, we need metric to measure an algorithm’s efficiency that does not depend on

these extraneous factors. One possible approach is to count the number of times

each of the algorithm’s operations is executed. This approach is excessively difficult.

The most important operation (+, -, *, /) of the algorithm, called the basic

operation. Computing the number of times the basic operation is executed is easy.

The total running time is

determined by basic operations count.

(iii) Orders of Growth

A difference in running times on small inputs is not what really distinguishes

efficient algorithms from inefficient ones.

For example, the greatest common divisor of two small numbers, it is not

immediately clear how much more efficient Euclid’s algorithm is compared to the

other algorithms, the difference in algorithm efficiencies becomes clear for larger

numbers only. For large values of n, it is the function’s order of growth that counts

just like the Table 1.1, which contains values of a few functions particularly

important for analysis of algorithms.

Table 1.1 Growth of function order

(iv) Worst-Case, Best-Case, and Average-Case Efficiencies Consider Sequential

Search algorithm some search key K

ALGORITHM SequentialSearch(A[0..n - 1], X)

{

//Searches for a given value in a given array by sequential search

//Input: An array A[0..n - 1] and a search key X

//Output: The index of the first element in A that matches K or -1 if

there are no

// matching elements
i ←0;

while i < n and A[i] ≠ X do
 i ←i + 1;

 if i < n return i

 else return -1;

}
Clearly, the running time of this algorithm can be quite different for the same

list size n. In the worst case, there is no matching of elements or the first matching

element can found at last on the list. In the best case, there is matching of elements

at first on the list.

Worst-case efficiency

The worst-case efficiency of an algorithm is its efficiency for the worst case

input of size n. The algorithm runs the longest among all possible inputs of that size.

For the input of size n, the running time is Cworst(n) = n.

Best case efficiency

The best-case efficiency of an algorithm is its efficiency for the best case input

of size n. The algorithm runs the fastest among all possible inputs of that size n. In

sequential search, If we search a first element in list of size n. (i.e. first element

equal toa search key), then the running time is Cbest(n) = 1

Average case efficiency

The Average case efficiency lies between best case and worst case. To analyze the

algorithm’s average case efficiency, we must make some assumptions about possible

inputs of size n.

Time complexity-Space Complexity

• Two criteria are used to judge algorithms: (i) time complexity (ii) space complexity.

• Space Complexity of an algorithm is the amount of memory it needs to run to

completion.

• Time Complexity of an algorithm is the amount of CPU time it needs to run to

completion.

Space Complexity:

Memory space S(P) needed by a program P, consists of two components:

• A fixed part: needed for instruction space (byte code), simple variable space,

constants space etc. c

• A variable part: dependent on a particular instance of input and output data.

 Sp(instance)

S(P) = c + Sp(instance)

Example 1:

Algorithm abc (a, b, c)

{

1. return a+b+b*c+(a+b-c)/(a+b)+4.0;

}

 For every instance 3 computer words required to store variables: a, b, and c.

Therefore Sp()= 3. S(P) = 3.

Example 2:

Algorithm Sum(a[], n)

{

1. s:= 0.0;

2. for i = 1 to n do

3. s := s + a[i];

4. return s;

}

Every instance needs to store array a[] & n.

1. Space needed to store n = 1 word.

2. Space needed to store a[] = n floating point words (or at least n words)

3. Space needed to store i and s = 2 words

 Sp(n) = (n + 3). Hence S(P) = (n + 3).

Time Complexity:

• How to measure T(P)?

– Measure experimentally, using a “stop watch”

 T(P) obtained in secs, msecs.

– Count program steps T(P) obtained as a step count.

• Fixed part is usually ignored; only the variable part tp() is measured.

What is a program step?

• a+b+b*c+(a+b)/(a-b) one step;

• comments zero steps;

• while (<expr>) do step count equal to the number of times <expr> is

executed.

• for i=<expr> to <expr1> do step count equal to number of times <expr1>

is checked.

 Statements S/E Freq. Total

1 Algorithm Sum(a[],n) 0 - 0

2 { 0 - 0

3 S = 0.0; 1 1 1

4 for i=1 to n do 1 n+1 n+1

5 s = s+a[i]; 1 n n

6 return s; 1 1 1

7 } 0 - 0

Total Count 2n+3

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 4

Unit - 1

Year and Semester: IIyr &II Sem
A

Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr.N. Subhash Chandra, Professor of CSE

Asymptotic notations: CO1

Asymptotic notation is a notation, which is used to take meaningful statement about

the efficiency of a program. The efficiency analysis framework concentrates on the order of

growth of an algorithm’s basic operation count as the principal indicator of the algorithm’s

efficiency. To compare and rank such orders of growth, computer scientists use five

notations, they are:

O - Big oh notation

Ω - Big omega notation

Θ - Big theta notation

o- Little oh notation

ω-Little omega notation

Asymptotically Non-Negative: A function g(n) is asymptotically nonnegative, if g(n)>=0 for

all n>=n0 where n0 in N={0,1,2,3,…}

Asymptotic Upper Bound: O(Big-oh)

Definition: Let f(n) and g(n) be asymptotically non-negative functions. We say

 f (n) is in O (g (n)) if there is a real positive constant c and a positive Integer n0 such

that for every n >= n0 , 0 <=f (n) <= c g (n).

(Or)

 O(g(n))= { f(n) | there exist a positive constant c and a positive integer n0 such that

 0 <=f(n) <= c g (n) for all n >= n0 }

The Figure 1.1 shows the growth function of f(n) and g(n) for case of asymptotic upper

bound

Figure 1.1 f(n)=O(g(n) growth function

Example 1: Verify 5n+2 = O(n).

Solution:

 From the definition of Big Oh, there must exist c>0 and integer n0 >0 such that

0 <= 5n+2<=c*n for all n>= n0.

Dividing both sides of the inequality by n>0 we get:

 0 <= 5+2/n <= c.

Cleary 2/n <= 2, since 2/n>0 becomes smaller when n increases.

There are many choices here for c and n0.

 If we choose n0 =1 then c >= 5+2/1= 7.

 If we choose c=6, then 0 <= 5+2/n<=6. So n0 >= 2.

 In either case (we only need one!) we have a c>o and n0 >0 such that 0 <=

5n+2<=cn for all n>= n0 .

 So the definition is satisfied and 5n+2 = O(n)

Asymptotic Lower Bound: Ω(Big-Omega)

Definition:

 Let f(n) and g(n) be asymptotically non-negative functions. We say

 f (n) is Ω (g (n)) if there is a positive real constant c and a positive integer n0 such that

for every n >= n0 0 <= c * g (n) <= f (n).

(Or)

Ω (g (n)) = { f (n) | there exist positive constant c and a positive integer n0 such that 0

<= c * g (n) <= f (n) for all n >= n0 }

From the definition of Omega, there must exist c>0 and integer n0>0 such that 0 <= c*n

<= 5n-20 for all n>= n0

Dividing the inequality by n>0 we get: 0 <= c <= 5-20/n for all n>= n0.

20/n <= 20, and 20/n becomes smaller as n grows.

There are many choices here for c and n0.

 Since c > 0, 5 – 20/n >0 and n0 >4

For example, if we choose c=4, then 5 – 20/n <= 4 and n0 >= 20

In this case we have a c>o and n0>0 such that 0 <= c*n <= 5n-20 for all n >=n0. So the

definition is satisfied and 5n-20 in Ω (n)

Asymptotic Tightly Bound: θ(Theta)

Definition: Let f (n) and g(n) be asymptotically non-negative functions. We say f (n) is θ(

g (n)) if there are positive constants c, d and a positive integer n0 such that for every n

>= n0

 0 <= c g (n) <= f (n) <= d g (n).

(Or)

θ (g(n))={f(n)|there exist positive constants c, d and a positive integer n0 such that 0 <= c

 g (n) <= f (n) <= d g (n). for all n >= n0 }

Example: Prove that)(3
2

1 22
nnn

Proof:

It is enough to prove that

)(3
2

1 22
nOnn

)(3
2

1 22
nnn

 12 and ,

 . all for

:get weby inequality the Dividing

. all for

that such ,and exist must there definition the From

 Choose

1/2. Since

n0 So

.4/1

 , finitefor 0/3

n0

n0

n0

4

13

2

1

3

2

1
0

02

232
2

1
0

00

n

nc
n

n

ncnnn

c

c

cnn

. and So

. all for

 1/4.c Choose finite for 0 Since

6. Since

.

 that such and exist must There

12041

12
3

2

1

4

1

.2/1 ,3

0 and
3

2

1
00

3

2

1
0

get we02by Dividing

0 allfor 32
2

120

00 n0

n/c

n
n

cn/n

n, c

n
c

n

nnnncn

c

N

Asymptotic o(Little-oh)

Definition: Let f (n) and g(n) be asymptotically non-negative functions. We say f (n) is

o (g (n)) if for every positive real constant c there exists a positive integer n0 such that

for all n>=n0

0 <= f(n) < c g (n).

 (Or)

o(g(n))={f(n): for any positive constant c >0, there exists a positive integer n0 > 0 such

that 0 <= f(n) < c g (n) for all n >= n0 }

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 5

Unit - 1

Year and Semester: IIyr &II Sem
A

Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr.N. Subhash Chandra, Professor of CSE

Calculating the running time of programs: CO1

Let us now look into how big-O bounds can be computed for

some common algorithms.

Example :

2n2 + 5n – 6 = O (2n)

2n2 + 5n – n)

2n2 + 5n – 6 = O (n3) 2n2 + 5n – 3)
2n2 + 5n – 6 = O (n2) 2n2 + 5n – 2)

2n2 + 5n – 2n2 + 5n – (n)

2n2 + 5n – n)

2n2 + 5n – 6 = o (2n)

2n2 + 5n – 3) 2n2 + 5n – 6 = o (n3)

2n2 + 5n – 2) 2n2 + 5n – 2)

2n2 + 5n – 2n2 + 5n –

Example:

If the first program takes 100n2 milliseconds and while the second

takes 5n3 milliseconds, then might not 5n3 program better than 100n2
program?

As the programs can be evaluated by comparing their running time

functions, with constants by proportionality neglected. So, 5n3
program be better than the 100n2 program.

5 n3/100 n2 = n/20

for inputs n < 20, the program with running time 5n3 will be faster

than those the one with running time 100 n2. Therefore, if the
program is to be run mainly on inputs of small size, we would indeed
prefer the program whose running time was O(n3)

However, as ‘n’ gets large, the ratio of the running times, which is

n/20, gets arbitrarily larger. Thus, as the size of the input increases,
the O(n3) program will take significantly more time than the O(n2)
program. So it is always better to prefer a program whose running
time with the lower growth rate. The low growth rate function’s such

as O(n) or O(n log n) are always better.

Example:

Analysis of simple for loop

Now let’s consider a simple for loop:

for (i = 1; i<=n; i++)

v[i] = v[i] + 1;

This loop will run exactly n times, and because the inside of the loop
takes constant time, the total running time is proportional to n. We
write it as O(n). The actual number of instructions might be 50n,

while the running time might be 17n microseconds. It might even be
17n+3 microseconds because the loop needs some time to start up.
The big-O notation allows a multiplication factor (like 17) as well as an
additive factor (like 3). As long as it’s a linear function which is

proportional to n, the correct notation is O(n) and the code is said to
have linear running time.

Example:

Analysis for nested for loop

Now let’s look at a more complicated example, a nested for loop:

for (i = 1; i<=n; i++)

for (j = 1; j<=n; j++)

a[i,j] = b[i,j] * x;

The outer for loop executes N times, while the inner loop executes n
times for every execution of the outer loop. That is, the inner loop

2 times. The assignment statement in the inner
loop takes constant time, so the running time of the code is O(n2)
steps. This piece of code is said to have quadratic running time.

Example:

Analysis of matrix multiply

code to compute the matrix product C = A * B is given below.

for (i = 1; i<=n; i++)

for (j = 1; j<=n; j++)
C[i, j] = 0;

for (k = 1; k<=n; k++)

C[i, j] = C[i, j] + A[i, k] * B[k, j];

There are 3 nested for loops, each of which runs n times. The

innermost loop therefore executes n*n*n = n3 times. The innermost
statement, which contains a scalar sum and product takes constant
O(1) time. So the algorithm overall takes O(n3) time.

Example :Analysis of bubble sort

The main body of the code for bubble sort looks something like this:

for (i = n-1; i<1; i--)

for (j = 1; j<=i; j++)

if (a[j] > a[j+1])

swap a[j] and a[j+1];

This looks like the double. The innermost statement, the if, takes O(1)
time. It doesn’t necessarily take the same time when the condition is
true as it does when it is false, but both times are bounded by a
constant. But there is an important difference here. The outer loop

executes n times, but the inner loop executes a number of times that

depends on i. The first time the inner for executes, it runs i = n-1
times. The second time it runs n-2 times, etc. The total number of

times the inner if statement executes is therefore:

(n-1) + (n-2) + ... + 3 + 2 + 1

This is the sum of an arithmetic series.

The value of the sum is n(n-1)/2. So the running time of bubble sort is
O(n(n-1)/2), which is O((n2-n)/2). Using the rules for big-O given
earlier, this bound simplifies to O((n2)/2) by ignoring a smaller term,
and to O(n2), by ignoring a constant factor. Thus, bubble sort is an

O(n2) algorithm.

Example :Analysis of binary search

Binary search is a little harder to analyze because it doesn’t have a for

loop. But it’s still pretty easy because the search interval halves each
time we iterate the search. The sequence of search intervals looks
something like this:

n, n/2, n/4, ..., 8, 4, 2, 1

It’s not obvious how long this sequence is, but if we

take logs, it is: log2 n, log2 n - 1, log2 n - 2, ...,

3, 2, 1, 0

Since the second sequence decrements by 1 each time down to 0, its length
must be
log2 n + 1. It takes only constant time to do each test of binary
search, so the total running time is just the number of times that we
iterate, which is log2n + 1. So binary search is an O(log2 n) algorithm.
Since the base of the log doesn’t matter in an asymptotic bound, we
can write that binary search is O(log n).

General rules for the analysis of programs

In general the running time of a statement or group of statements

may be parameterized by the input size and/or by one or more

variables. The only permissible parameter for the running time of the

whole program is ‘n’ the input size.

1. The running time of each assignment read and write statement

can usually be taken to be O(1). (There are few exemptions,
such as in PL/1, where assignments can involve arbitrarily
larger arrays and in any language that allows function calls in

arraignment statements).

2. The running time of a sequence of statements is determined by the sum

rule.

I.e. the running time of the sequence is, to with in a
constant factor, the largest running time of any
statement in the sequence.

3. The running time of an if–statement is the cost of conditionally

executed statements, plus the time for evaluating the
condition. The time to evaluate the condition is normally O(1)
the time for an if–then–else construct is the time to evaluate

the condition plus the larger of the time needed for the
statements executed when the condition is true and the time
for the statements executed when the condition is false.

4. The time to execute a loop is the sum, over all times around
the loop, the time to execute the body and the time to

evaluate the condition for termination (usually the latter is
O(1)). Often this time is, neglected constant factors, the

product of the number of times around the loop and the largest

possible time for one execution of the body, but we must
consider each loop separately to make sure.

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 6

Unit - 1

Year and Semester: IIyr &II Sem
A

Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr.N. Subhash Chandra, Professor of CSE

Probabilities Analysis: CO1

Probabilities Analysis:

this analysis uses probability

Example:

A sample space S will for us be some collection on elementary events.

For instance, results of coin flips. Then S={HH, TH, HT, TT}.

 An event E is any subset of S.

For example, E= {TH, HT} be the event of S

A probability distribution P{} on S is a mapping from events on S to the real numbers

satisfying for any events A and B. A’ be the complement of A

 (a) P{A} >= 0 (b) P{S} = 1 (c) P{A∪ B} = P{A} + P{B} if A ∩ B = ∅

Result 1 : P{S∪ ∅} = P{S} + P{∅} = 1 + P{∅}. So P{∅} = 0.

Result 2 : P{S}= P{A∪ A’} = P{A} + P{A’}. So P{A’}=1- P{A}.

Conditional Probability and Independence

The conditional probability of an event A given an event B is defined to be: P{A|B} =

P{A∩B}/P{B}.

• Two events are independent if Pr{A∩B} = Pr{A}Pr{B}

 • Given a collection A1, A2,… Ak of events we say they are pairwise independent if Pr{Ai ∩

Aj } = Pr{Ai }Pr{Aj } for any i and j.

• They are mutually independent if for an subset Ai_1, A2,… Ai_m of then Pr{Ai_1 ∩…

Ai_m} = Pr{Ai_1}* *Pr{Ai_m}

A discrete random variable X is a function from a finite sample space S to the real numbers.

• Given such a function X we can define the probability density function for X as: f(x) =

Pr{X = x} where the little x is a real number.

The expected value of a random variable X is defined to be:

• The variance of X, Var[X] is defined to be: E[(X- E(X))2]= E[X2] -(E[X])2 • The standard

deviation of X, σX, is defined to be the (Var[X])1/2.

Indicator Random Variables

• In order to analyze the hiring problem we need a convenient way to convert between

probabilities and expectations.

• We will use indicator random variables to help us do this.

• Given a sample space S and an event A. Then the indicator random variable I{A}

associated with event A is define as: 𝐼(𝐴) = {1 𝑖𝑓 𝐴 𝑜𝑐𝑐𝑢𝑟0 𝑖𝑓 𝐴 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟

Example:

Suppose our sample space S={H,T} with P{H}=P{T}=1/2.

We can define an indicator random variable XH associated with the coin coming up heads:

 XH= 𝐼(𝐻) = {1 𝑖𝑓 𝐻 𝑜𝑐𝑐𝑢𝑟0 𝑖𝑓 𝑇 𝑜𝑐𝑐𝑢𝑟

The expected number of heads in one coin flip is then

 E[XH]=P(H)*I(H)+P(T)*I(T)

 = ½*1+1/2*0 =1/2.

Lemma 1: Given a sample space S and an event A in S, let XA=I{A}. Then E[XA]=P{A}.

Proof: E[XA] = E[I{A}]

 = 1*P{A}+ 0*P{A}

 =P{A}.

Indicator random variables are more useful if we are dealing with more than one coin flip.

Let Xi be the indicator that indicates whether the result of the ith coin flip was a head.

Consider the random variable: X= ∑ 𝑥𝑖𝑛𝑖=1

Then the expected number of head in n tosses is

 E[X]=E[∑ 𝑥𝑖𝑛𝑖=1]=∑ 𝐸[𝑥𝑖𝑛𝑖=1]=∑ 12𝑛𝑖=1 =n/2

The Hiring Problem

We will now begin our investigation of randomized algorithms with a toy problem:

• You want to hire an office assistant from an employment agency.

• You want to interview candidates and determine if they are better than the current

assistant and if so replace the current assistant.

• You are going to eventually interview every candidate from a pool of n candidates.

• You want to always have the best person for this job, so you will replace an assistant with

a better one as soon as you are done the interview.

• However, there is a cost to fire and then hire someone.

• You want to know the expected price of following this strategy until all n candidates have

been interviewed.

Algorithm Hire-Assistant(n)

{

 best := dummy candidate;

 for i := 1 to n do

 {

 interview of candidate i ;

 if (candidate i is better than best) then

 {

 best := i;

 hire candidate i;

 }

 }

}

• Interviewing has a low cost ci .

• Hiring has a high cost ch.

• Let n be the number of candidates to be interviewed and let m be the number of people

hired.

• The total cost then goes as O(n*ci +m*ch)

• The number of candidates is fixed so the part of the algorithm we want to focus on is the

m*ch term.

• This term governs the cost of hiring.

Worst-case Analysis

• In the worst case, everyone we interview turns out to be better than the person we

currently have.

• In this case, the hiring cost for the algorithm will be O(n*ch).

• This bad situation presumably doesn’t typically happen so it is interesting to ask what

happens in the average case.

Analysis of the Hiring Problem

• Let Xi be the indicator random variable which is 1 if candidate i is hired and 0 otherwise.

• Let

• By our lemma E[Xi] = Pr{candidate i is hired}

• Candidate i will be hired if i is better than each of candidates 1 through i-1.

• As each candidate arrives in random order, any one of the first candidate i is equally likely

to be the best candidate so far. So E[Xi] =1/i.

 E[X]=E[∑ 𝑥𝑖𝑛𝑖=1]=∑ 𝐸[𝑥𝑖𝑛𝑖=1]=∑ 1𝑖𝑛𝑖=1 =ln(n)+O(1)

Assume that the candidates are presented in random order, then algorithm Hire-Assistant

has a hiring cost of O(ch*ln n)

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 7

Unit - 1

Year and Semester: IIyr &II Sem
A

Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr.N. Subhash Chandra, Professor of CSE

Amortized Analysis: CO1

What is Amortized Analysis ?

 In amortized analysis, the time required to perform a sequence of

operations is averaged over all the operations performed.

 No involvement of probability

 Average performance on a sequence of operations, even some operation is

expensive.

 Guarantee average performance of each operation among the sequence in

worst case.

 Methods of Amortized Analysis

Aggregate Method: we determine an upper bound T(n) on the total sequence of n

operations. The cost of each will then be T(n)/n.

Accounting Method: we overcharge some operations early and use them to as

prepaid charge later.

Potential Method: we maintain credit as potential energy associated with the structure as

a whole.

1. Aggregate Method

 Show that for all n, a sequence of n operations take worst-case time T(n) in total

 In the worst case, the average cost, or amortized cost , per operation is T(n)/n.

 The amortized cost applies to each operation, even when there are several types of

operations in the sequence.

Aggregate Analysis: Stack Example

 Sequence of n push, pop, Multipop operations

 Worst-case cost of Multipop is O(n)

 Have n operations

 Therefore, worst-case cost of sequence is O(n2)

 Observations

 Each object can be popped only once per time that it’s pushed

 Have <= n pushes => <= n pops, including those in Multipop

 Therefore total cost = O(n)

 Average over n operations => O(1) per operation on average

 Notice that no probability involved

2. Accounting Method

Charge i th operation a fictitious amortized cost ĉi, where $1 pays for 1 unit of work

(i.e., time).

 Assign different charges (amortized cost) to different operations

 Some are charged more than actual cost

 Some are charged less

 This fee is consumed to perform the operation.

 Any amount not immediately consumed is stored in the bank for use by subsequent

operations.

 The bank balance (the credit) must not go negative!

We must ensure that

3 ops:

Push(S,x) Pop(S) Multi-pop(S,k)

Worst-

case

cost:

O(1) O(1)
O(min(|S|,k)

= O(n)

 for all n.

n

i

i

n

i

i
cc

11

ˆ

 Thus, the total amortized costs provide an upper bound on the total true costs.

 When pushing an object, pay $2

 $1 pays for the push

 $1 is prepayment for it being popped by either pop or Multipop

 Since each object has $1, which is credit, the credit can never go negative

 Therefore, total amortized cost = O(n), is an upper bound on total actual cost

Accounting Method: Binary Counter

 k-bit Binary Counter: A[0..k1]

1

0
2][

k

i

i
iAx

INCREMENT(A)

1. i 0

2. while i < length[A] and A[i] = 1

3. do A[i] 0 ⊳ reset a bit

4. i i + 1

5. if i < length[A]

6. then A[i] 1 ⊳ set a bit

Consider a sequence of n increments. The worst-case time to execute one increment is

Q(k). Therefore, the worst-case time for n increments is n · Q(k) = Q(n k).

WRONG! In fact, the worst-case cost for n increments is only Q(n) ≪ Q(n k).

Ctr A[4] A[3] A[2] A[1] A[0] Cost

0 0 0 0 0 0 0

1 0 0 0 0 1 1

2 0 0 0 1 0 3

3 0 0 0 1 1 4

4 0 0 1 0 0 7

5 0 0 1 0 1 8

6 0 0 1 1 0 10

7 0 0 1 1 1 11

8 0 1 0 0 0 15

9 0 1 0 0 1 16

10 0 1 0 1 0 18

11 0 1 0 1 1 19

Total cost of n operations

A[0] flipped every op n

A[1] flipped every 2 ops n/2

A[2] flipped every 4 ops n/22

A[3] flipped every 8 ops n/23

 … … … … …

A[i] flipped every 2i ops n/2i

Cost of n increments

)(

2
2

1

2

1

lg

1

n

nn

n

i

i

n

i

i

Thus, the average cost of each increment operation is Q(n)/n = Q(1).

3. Potential Method

IDEA: View the bank account as the potential energy (as in physics) of the dynamic

set.

FRAMEWORK:

 Start with an initial data structure D0.

 Operation i transforms Di–1 to Di.

 The cost of operation i is ci.

 Define a potential function F : {Di} R,

 such that F(D0) = 0 and F(Di) ³ 0 for all i.

 The amortized cost ĉi with respect to F is defined to be ĉi = ci + F(Di) – F(Di–1).

 Like the accounting method, but think of the credit as potential stored with the entire

data structure.

 Accounting method stores credit with specific objects while potential method

stores potential in the data structure as a whole.

 Can release potential to pay for future operations

 Most flexible of the amortized analysis methods).

 ĉi = ci + F(Di) – F(Di–1)

 If DFi > 0, then ĉi > ci. Operation i stores work in the data structure for later use.

 If DFi < 0, then ĉi < ci. The data structure delivers up stored work to help pay for

operation i.

The total amortized cost of n operations is

n

i

iii

n

i

i
DDcc

1

1

1

)()(ˆ

Summing both sides telescopically

)()(0

1

DDc
n

n

i

i

n

i

i
c

1

 since F(Dn) ³ 0 and F(D0) = 0.

Stack Example

Define: (Di) = #items in stack Thus, (D0)=0.

Plug in for operations:

Push: ĉi = ci + (Di) - (Di-1)

 = 1 + j - (j-1)

 = 2

Pop: ĉi = ci + (Di) - (Di-1)

 = 1 + (j-1) - j

 = 0

Multi-pop: ĉi = ci + (Di) - (Di-1)

 = k’ + (j-k’) - j k’=min(|S|,k)

 = 0

Potential Method: Binary Counter

Define the potential of the counter after the ith operation by F(Di) = bi, the number of 1’s

in the counter after the ith operation.

Note:

• F(D0) = 0,

• F(Di) ³ 0 for all i.

Example

0 0 0 1 0 1 0

0 0 0 1$1 0 1$1 0

Assume ith INCREMENT resets ti bits (in line 3).

Actual cost ci = (ti + 1)

Number of 1’s after ith operation: bi = bi–1 – ti + 1

The amortized cost of the i th INCREMENT is

ĉi = ci + F(Di) – F(Di–1)

 = (ti + 1) + (1 ti)

 = 2

Therefore, n INCREMENTs cost Q(n) in the worst case

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 1

Unit - II

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Disjoint Set Operations : CO1 and CO2

Set:

A set is a collection of distinct elements. The Set can be

represented, for examples, as S1={1,2,5,10}.

Disjoint Sets:
The disjoints sets are those do not have any common element.

For example S1={1,7,8,9} and S2={2,5,10}, then we can say that
S1 and S2 are two disjoint sets.

Disjoint Set Operations:
The disjoint set operations are

1. Union
2. Find

Disjoint set Union:

If Si and Sj are tow disjoint sets, then their union Si U Sj

consists of all the elements x such that x is in Si or Sj.

Example:

S1={1,7,8,9} S2={2,5,10}

S1 U S2={1,2,5,7,8,9,10}

Find:

Given the element I, find the set containing i.

Example:
S1={1,7,8,9}
Then,

S2={2,5,10}

s3={3,4,6}

Find(4)= S3 Find(5)=S2 Find97)=S1

Set Representation:

The set will be represented as the tree structure where all

children will store the address of parent / root node. The root node

will store null at the place of parent address. In the given set of

elements any element can be selected as the root node, generally we

select the first node as the root node.

Example:
S1={1,7,8,9} S2={2,5,10} s3={3,4,6}
Then these sets can be represented as

Disjoint Union:

To perform disjoint set union between two sets Si and Sj can

take any one root and make it sub-tree of the other. Consider the

above example sets S1 and S2 then the union of S1 and S2 can be

represented as any one of the following.

Find:

To perform find operation, along with the tree structure we need to
 mai

ntain

the name of each set. So, we require one more data structure to store

the set names. The data structure contains two fields. One is the set

name and the other one is the pointer to root.

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 2

Unit - II

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Union and Find Algorithms: CO2
In presenting Union and Find algorithms, we ignore the set

names and identify sets just by the roots of trees representing them.

To represent the sets, we use an array of 1 to n elements where n is

the maximum value among the elements of all sets. The index values

represent the nodes (elements of set) and the entries represent the

parent node. For the root value the entry will be ‘-1’.

Example:

For the following sets the array representation is as shown below.

i [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

p -1 -1 -1 3 2 3 1 1 1 2

Algorithm for Union operation:

To perform union the SimpleUnion(i,j) function takes the

inputs as the set roots i and j . And make the parent of i as j i.e, make

the second root as the parent of first root.

Algorithm SimpleUnion(i,j)

{

P[i]:=j;

}

Algorithm for find operation:

The SimpleFind(i) algorithm takes the element i and finds the

root node of i. It starts at I until it reaches a node with parent value -

1.
Algorithms SimpleFind(i)

{

while(P[i]≥0)
do i:=P[i];

return i;
}

Analysis of SimpleUnion(i,j) and SimpleFind(i):

Although the SimpleUnion(i,j) and SimpleFind(i) algorithms

are easy to state, their performance characteristics are not very

good. For example, consider the sets

.

Then if we want to perform following sequence of operations Union(1,2) , Union(2,3)……. Union(n 1,n) and sequence of Find(1), Find(2)………

1 4 2 3 n

The sequence of Union operations results the degenerate tree as below.

Since, the time taken for a Union is constant, the n-1 sequence of

union can be processed in time O(n). And for the sequence of Find

operations it will take time
n

complexity of O (i) = O(n2).
i1

We can improve the performance of union and find by avoiding
the creation of degenerate tree by applying weighting rule for
Union.

Weighting rule for Union:

If the number of nodes in the tree with root I is less than the

number in the tree with the root j, then make ‘j’ the parent of i;

otherwise make ‘i' the parent of j.

To implement weighting rule we need to know how many nodes are

there in every tree. To do this we maintain “count” field in the root of

every tree. If ‘i' is the root then count[i] equals to number of nodes in

tree with root i.

Since all nodes other than roots have positive numbers in parent

(P) field, we can maintain count in P field of the root as negative

number.

Algorithm WeightedUnion(i,j)
//Union sets with roots i and j , i≠j using the weighted rule

// P[i]=-count[i] and p[j]=-count[j]

n

n-1

n-2

1

{

temp:= P[i]+P[j];

if (P[i]>P[j]) then

{// i as fewer nodes P[i]:=j;
P[j]:=temp;

}
else

{// j has fewer nodes P[j]:=i;
P[i]:=temp;

}

}

Collapsing rule for find:

If j is a node on the path from i to its root and p[i]≠root[i], then set P[j]
to

root[i]. Consider the tree created by WeightedUnion() on the
sequence of 1≤i≤8. Union(1,2), Union(3,4), Union(5,6) and
Union(7,8)

Now process the following eight find

operations Find(8),

Find(8)………………………Find(8)

If SimpleFind() is used each Find(8) requires going up three parent

link fields for a total of 24 moves .

When Collapsing find is used the first Find(8) requires going up three

links and resetting three links. Each of remaining seven finds require

going up only one link field. Then the total cost is now only 13

moves.(3 going up + 3 resets + 7 remaining finds).

Algorithm CollapsingFind(i)
// Find the root of the tree containing element i

// use the collapsing rule to collapse all nodes from i to root.
{

r:=i;

while(P[r]>0) do

r:=P[r]; //Find root
while(i≠r)
{

//reset the parent node from element i
to the root s:=P[i];
P[i]:=r;
i:=s;

}

}

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 3

Unit - II

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Efficient non-recursive binary tree traversal Algorithms:

CO2

Search means finding a path or traversal between a start node and one of a set of

goal nodes. Search is a study of states and their transitions.

Search involves visiting nodes in a graph in a systematic manner, and may or may

not result into a visit to all nodes. When the search necessarily involved the

examination of every vertex in the tree, it is called the traversal.

Techniques for Traversal of a Binary Tree:

A binary tree is a finite (possibly empty) collection of elements. When the binary tree

is not empty, it has a root element and remaining elements (if any) are partitioned

into two binary trees, which are called the left and right subtrees.

There are three common ways to traverse a binary tree:

1. Preorder

2. Inorder

3. postorder

In all the three traversal methods, the left subtree of a node is traversed before the

right subtree. The difference among the three orders comes from the difference in the

time at which a node is visited.

Inorder Traversal:

In the case of inorder traversal, the root of each subtree is visited after its left subtree

has been traversed but before the traversal of its right subtree begins. The steps for

traversing a binary tree in inorder traversal are:

1. Visit the left subtree, using inorder.
2. Visit the root.

3. Visit the right subtree, using inorder.

The algorithm for preorder traversal is as follows:

treenode = record
{

Type data; //Type is the data type of data.

Treenode *lchild; treenode *rchild;
}

algorithm inorder (t)
// t is a binary tree. Each node of t has three fields: lchild, data, and rchild.

{

if t 0 then

{

inorder (t lchild);

visit (t);
inorder (t rchild);

}

}

Preorder Traversal:

In a preorder traversal, each node is visited before its left and right subtrees are

traversed. Preorder search is also called backtracking. The steps for traversing a

binary tree in preorder traversal are:

1. Visit the root.

2. Visit the left subtree, using preorder.

3. Visit the right subtree, using preorder.

The algorithm for preorder traversal is as follows:

Algorithm Preorder (t)

// t is a binary tree. Each node of t has three fields; lchild, data, and rchild.

{

if t 0 then
{

visit (t);

Preorder (t lchild);

Preorder (t rchild);
}

}

Postorder Traversal:

In a postorder traversal, each root is visited after its left and right subtrees have been

traversed. The steps for traversing a binary tree in postorder traversal are:

1. Visit the left subtree, using postorder.

2. Visit the right subtree, using postorder

3. Visit the root.

The algorithm for preorder traversal is as follows:

Algorithm Postorder (t)

// t is a binary tree. Each node of t has three fields : lchild, data, and rchild.

{

if t 0 then
{

Postorder (t lchild);

Postorder (t rchild);

visit(t);
}

}

Examples for binary tree traversal/search technique:

Example 1:

Traverse the following binary tree in pre, post and in-order.

Bi n a ry T re e P re, P o st a n d In- o rd er T ra v ers in g

Example 2:

Traverse the following binary tree in pre, post, inorder and level order.

Bi n a ry T re e P re, P o st , In o rd er a n d l ev e l o rd er T ra v ers in g

Example 3:

Traverse the following binary tree in pre, post, inorder and level order.

Bi n a ry T re e P re, P o st , In o rd er a n d lev e l o rd er T ra v ers in g

Preorderi ng of the vertices:

A, B, D, C, E, G, F, H, I.

Post ord eri ng of t he vertices:

D, B, G, E, H, I, F, C, A.

Inord eri ng of t he

vertices: D, B, A, E, G,

C, H, F, I

H I

 • P reo rde r t ra v e rs a l y ie lds:

A, B, D, C , E, G , F , H, I

• Posto rde r t ra v e rs a l y ie lds:
D, B, G , E, H, I, F , C , A

• Ino rde r t ra v e rs a l y ie lds:
D, B, A, E, G , C , H, F , I

• Le v e l o rde r t ra v e rs a l y ie lds:

A, B, C , D, E, F , G , H, I

R Y B H

• P reo rde r t ra v e rs a l y ie lds:

P , F , B, H, G , S, R, Y, T, W , Z

• Posto rde r t ra v e rs a l y ie lds:

B, G , H, F , R, W , T, Z, Y, S, P

• Ino rde r t ra v e rs a l y ie lds:

B, F , G , H, P , R, S, T, W , Y, Z

• Le v e l o rde r t ra v e rs a l y ie lds:
P , F , S, B, H, R, Y, G , T, Z, W

Example 4:

Traverse the following binary tree in pre, post, inorder and level order.

Bi n a ry T re e P re, P o st , In o rd er a n d l ev e l o rd er T ra v ers in g

Example 5:

Traverse the following binary tree in pre, post, inorder and level order.

Bi n a ry T re e P re, P o st , In o rd er a n d l ev e l ord er T ra v ers in g

Non Recursive Binary Tree Traversal Algorithms:

At first glance, it appears we would always want to use the flat traversal functions

since the use less stack space. But the flat versions are not necessarily better. For

instance, some overhead is associated with the use of an explicit stack, which may

negate the savings we gain from storing only node pointers. Use of the implicit

function call stack may actually be faster due to special machine instructions that can

be used.

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following
steps until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto
the stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with

right son exists, then set right son of vertex as current vertex and return to

step one.

5 11 4

• P reo rde r t ra v e rs a l y ie lds:

2, 7 , 2 , 6 , 5 , 11 , 5 , 9 , 4

• Posto rde r t ra v a rs a l y ie lds:

2, 5 , 11 , 6 , 7 , 4 , 9 , 5 , 2

• Ino rde r t ra v a rs a l y ie lds:
2, 7 , 5 , 6 , 11 , 2 , 5 , 4 , 9

• Le v e l o rde r t ra v e rs a l y ie lds:
2, 7 , 5 , 2 , 6 , 9 , 5 , 11 , 4

• Preo rde r t rav e rs al y ie lds:

A, B, D, G , K, H, L, M , C , E

• Posto rde r t rav ars al y ie lds:
K, G , L, M , H, D, B, E, C , A

• Ino rde r t rav ars al y ie lds:

K, G , D, L, H, M , B, A, E, C

• Le v e l o rde r t rav e rs al y ie lds:

A, B, C , D, E, G , H, K, L, M

The algorithm for inorder Non Recursive traversal is as follows:

Algorithm inorder()

{

stack[1] = 0

vertex = root
top: while(vertex ≠ 0)

{

push the vertex into the stack

vertex = leftson(vertex)
}

pop the element from the stack and make it as vertex

while(vertex ≠ 0)
{

print the vertex node

if(rightson(vertex) ≠ 0)
{

vertex = rightson(vertex)

goto top
}

pop the element from the stack and made it as vertex

}

}

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack,

if any and process each vertex. The traversing ends after a vertex with no left

child exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

The algorithm for preorder Non Recursive traversal is as follows:

Algorithm preorder()
{

stack[1]: = 0

vertex := root.

while(vertex ≠ 0)
{

print vertex node
if(rightson(vertex) ≠ 0)

push the right son of vertex into the stack.

if(leftson(vertex) ≠ 0)
vertex := leftson(vertex)

else

}

}

pop the element from the stack and made it as vertex

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following
steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push

vertex on to stack and if vertex has a right son push –(right son of vertex)

onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If
a negative node is popped, then ignore the sign and return to step one.

The algorithm for postorder Non Recursive traversal is as follows:

Algorithm postorder()
{

stack[1] := 0

vertex := root

top: while(vertex ≠ 0)
{

push vertex onto stack
if(rightson(vertex) ≠ 0)
push -leftson(vertex) onto stack

vertex := leftson(vertex)
}

pop from stack and make it as vertex

while(vertex > 0)
{

print the vertex node

pop from stack and make it as vertex

}

if(vertex < 0)
{

vertex := -(vertex)
goto top

}

}

Example 1:

Traverse the following binary tree in pre, post and inorder using non-recursive
traversing algorithm.

Bi n a ry T re e P re, P o st a n d In o rd er T ra v ers in g

• Preo rde r t rav e rs al y ie lds:

A, B, D, G , K, H, L, M , C , E

• Posto rde r t rav ars al y ie lds:
K, G , L, M , H, D, B, E, C , A

• Ino rde r t rav ars al y ie lds:

K, G , D, L, H, M , B, A, E, C

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following
steps until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto

the stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with

right son exists, then set right son of vertex as current vertex and return to

step one.

Current

vertex
Stack Processed nodes Remarks

A 0 PUSH 0

 0 A B D G K PUSH the left most path of A

K 0 A B D G K POP K

G 0 A B D K G POP G since K has no right son

D 0 A B K G D POP D since G has no right son

H 0 A B K G D
Make the right son of D as

vertex

H 0 A B H L K G D PUSH the leftmost path of H

L 0 A B H K G D L POP L

H 0 A B K G D L H POP H since L has no right son

M 0 A B K G D L H
Make the right son of H as

vertex

 0 A B M K G D L H PUSH the left most path of M

M 0 A B K G D L H M POP M

B 0 A K G D L H M B POP B since M has no right son

A 0 K G D L H M B A
Make the right son of A as

vertex

C 0 C E K G D L H M B A PUSH the left most path of C

E 0 C K G D L H M B A E POP E

C 0 K G D L H M B A E C Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push

vertex on to stack and if vertex has a right son push -(right son of vertex)

onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If

a negative node is popped, then ignore the sign and return to step one.

Current

vertex
Stack Processed nodes Remarks

A 0 PUSH 0

0 A -C B D -H G K

 PUSH the left most path of A with

a -ve for right sons
 0 A -C B D -H K G POP all +ve nodes K and G

H 0 A -C B D K G Pop H

0 A -C B D H -M L K G

PUSH the left most path of H with
a -ve for right sons

 0 A -C B D H -M K G L POP all +ve nodes L

M 0 A -C B D H K G L Pop M

0 A -C B D H M K G L

PUSH the left most path of M with

a -ve for right sons
 0 A -C K G L M H D B POP all +ve nodes M, H, D and B

C 0 A K G L M H D B Pop C

0 A C E K G L M H D B

PUSH the left most path of C with

a -ve for right sons

 0 K G L M H D B E C A POP all +ve nodes E, C and A

 0 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack,

if any and process each vertex. The traversing ends after a vertex with no left

child exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

Current

vertex
Stack Processed nodes Remarks

A 0 PUSH 0

0 C H

A B D G K

PUSH the right son of each vertex onto

stack and process each vertex in the left
most path

H 0 C A B D G K POP H

0 C M

A B D G K H L

PUSH the right son of each vertex onto

stack and process each vertex in the left
most path

M 0 C A B D G K H L POP M

0 C

A B D G K H L M

PUSH the right son of each vertex onto

stack and process each vertex in the left
most path; M has no left path

C 0 A B D G K H L M Pop C

0

A B D G K H L M C E

PUSH the right son of each vertex onto

stack and process each vertex in the left

most path; C has no right son on the left
most path

 0 A B D G K H L M C E Stop since stack is empty

Example 2:

Traverse the following binary tree in pre, post and inorder using non-recursive
traversing algorithm.

Bi n a ry T re e P re, P o st a n d In o rd er T ra v ers in g

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following
steps until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto

the stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with

right son exists, then set right son of vertex as current vertex and return to

step one.

Current

vertex
Stack Processed nodes Remarks

2 0

 0 2 7 2

2 0 2 7 2

7 0 2 2 7

6 0 2 6 5 2 7

5 0 2 6 2 7 5

11 0 2 2 7 5 6 11

5 0 5 2 7 5 6 11 2

9 0 9 4 2 7 5 6 11 2 5

4 0 9 2 7 5 6 11 2 5 4

 0 2 7 5 6 11 2 5 4 9 Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push

vertex on to stack and if vertex has a right son push –(right son of vertex)

onto stack.

5 11 4

• Preo rde r t rav e rs al y ie lds:
2, 7 , 2 , 6 , 5 , 11 , 5 , 9 , 4

• Posto rde r t rav ars al y ie lds:

2, 5 , 11 , 6 , 7 , 4 , 9 , 5 , 2

• Ino rde r t rav ars al y ie lds:
2, 7 , 5 , 6 , 11 , 2 , 5 , 4 , 9

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If
a negative node is popped, then ignore the sign and return to step one.

Current
vertex

Stack Processed nodes Remarks

2 0

 0 2 -5 7 -6 2

2 0 2 -5 7 -6 2

6 0 2 -5 7 2

 0 2 -5 7 6 -11 5 2

5 0 2 -5 7 6 -11 2 5

11 0 2 -5 7 6 11 2 5

 0 2 -5 2 5 11 6 7

5 0 2 5 -9 2 5 11 6 7

9 0 2 5 9 4 2 5 11 6 7

 0 2 5 11 6 7 4 9 5 2 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack,

if any and process each vertex. The traversing ends after a vertex with no left

child exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

Current

vertex
Stack Processed nodes Remarks

2 0

 0 5 6 2 7 2

6 0 5 11 2 7 2 6 5

11 0 5 2 7 2 6 5

 0 5 2 7 2 6 5 11

5 0 9 2 7 2 6 5 11

9 0 2 7 2 6 5 11 5

 0 2 7 2 6 5 11 5 9 4 Stop since stack is empty

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 5

Unit - II

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Articulation Points and Biconnected Components: CO2

Let G = (V, E) be a connected undirected graph. Consider the following definitions:

Articulation Point (or Cut Vertex): An articulation point in a connected graph is a

vertex (together with the removal of any incident edges) that, if deleted, would break

the graph into two or more pieces..

Bridge: Is an edge whose removal results in a disconnected graph.

Biconnected: A graph is biconnected if it contains no articulation points. In a

biconnected graph, two distinct paths connect each pair of vertices. A graph that is

not biconnected divides into biconnected components. This is illustrated in the

following figure:

Articulation Points and Bridges

Biconnected graphs and articulation points are of great interest in the design of

network algorithms, because these are the “critical" points, whose failure will result in

the network becoming disconnected.

Let us consider the typical case of vertex v, where v is not a leaf and v is not the root.
Let w1, w2, wk be the children of v. For each child there is a subtree of the
DFS tree rooted at this child. If for some child, there is no back edge going to a
proper ancestor of v, then if we remove v, this subtree becomes disconnected from
the rest of the graph, and hence v is an articulation point.

On the other hand, if every one of the subtree rooted at the children of v have back

edges to proper ancestors of v, then if v is removed, the graph remains connected

(the back edges hold everything together). This leads to the following:

Observation 1: An internal vertex v of the DFS tree (other than the root) is

Biconnecte
d

Component
s

an articulation point if and only if there is a subtree rooted at a child of v such
that there is no back edge from any vertex in this subtree to a proper ancestor
of v.

Observation 2: A leaf of the DFS tree is never an articulation point, since a
leaf will not have any subtrees in the DFS tree.

Thus, after deletion of a leaf from a tree, the rest of the tree remains

connected, thus even ignoring the back edges, the graph is connected after

the deletion of a leaf from the DFS tree.

Observation 3: The root of the DFS is an articulation point if and only if it has
two or more children. If the root has only a single child, then (as in the case of
leaves) its removal does not disconnect the DFS tree, and hence cannot
disconnect the graph in general.

Articulation Points by Depth First Search:

Determining the articulation turns out to be a simple extension of depth first search.
Consider a depth first spanning tree for this graph.

Observations 1, 2, and 3 provide us with a structural characterization of which

vertices in the DFS tree are articulation points.

Deleting node E does not disconnect the graph because G and D both have dotted

links (back edges) that point above E, giving alternate paths from them to F. On the

other hand, deleting G does disconnect the graph because there are no such alternate

paths from L or H to E (G’s parent).

A vertex ‘x’ is not an articulation point if every child ‘y’ has some node lower in the

tree connect (via a dotted link) to a node higher in the tree than ‘x’, thus providing an

alternate connection from ‘x’ to ‘y’. This rule will not work for the root node since

there are no nodes higher in the tree. The root is an articulation point if it has two or

more children.

Depth First Spanning Tree for the above graph is:

By using the above observations the articulation points of this graph are:

A : because it connects B to the rest of the graph.

H : because it connects I to the rest of the graph.

J : because it connects K to the rest of the graph.

G : because the graph would fall into three pieces if G is deleted.

Biconnected components are: {A, C, G, D, E, F}, {G, J, L, M}, B, H, I and K

This observation leads to a simple rule to identify articulation points. For each is

define L (u) as follows:

L (u) = min {DFN (u), min {L (w) w is a child of u}, min {DFN (w) (u, w)

is a back edge}}.

L (u) is the lowest depth first number that can be reached from ‘u’ using a path of

descendents followed by at most one back edge. It follows that, If ‘u’ is not the root

then ‘u’ is an articulation point iff ‘u’ has a child ‘w’ such that:

L (w) ≥ DFN (u)

6.6.2. Algorithm for finding the Articulation points:

Pseudocode to compute DFN and L.

Algorithm Art (u, v)

// u is a start vertex for depth first search. V is its parent if any in the depth first

// spanning tree. It is assumed that the global array dfn is initialized to zero and that // the

global variable num is initialized to 1. n is the number of vertices in G.
{

dfn [u] := num; L [u] := num; num := num + 1;

for each vertex w adjacent from u do
{

if (dfn [w] = 0) then
{

Art (w, u); // w is unvisited.

L [u] := min (L [u], L [w]);
}

else if (w v) then L [u] := min (L [u], dfn [w]);

}

}

6.6.1. Algorithm for finding the Biconnected Components:

Algorithm BiComp (u, v)

// u is a start vertex for depth first search. V is its parent if any in the depth first
// spanning tree. It is assumed that the global array dfn is initially zero and that the

// global variable num is initialized to 1. n is the number of vertices in G.
{

dfn [u] := num; L [u] := num; num := num + 1;

for each vertex w adjacent from u do
{

if ((v w) and (dfn [w] < dfn [u])) then

8 6

1 1 5 7

 6 2

3 3 8 1 0

1 0 9 5

add (u, w) to the top of a stack s;
if (dfn [w] = 0) then

{

if (L [w] > dfn [u]) then
{

write (“New bicomponent”);
repeat
{

Delete an edge from the top of stack s;

Let this edge be (x, y);
Write (x, y);

} until (((x, y) = (u, w)) or ((x, y) = (w, u)));

}

BiComp (w, u); // w is unvisited.
L [u] := min (L [u], L [w]);

}

else if (w v) then L [u] : = min (L [u], dfn [w]);

}

}

6.7.1. Example:

For the following graph identify the articulation points and Biconnected components:

2 9

4

4

Grap h

Dept h Fi rst Sp an ni ng Tree

To identify the articulation points, we use:

L (u) = min {DFN (u), min {L (w) w is a child of u}, min {DFN (w) w is a vertex

to which there is back edge from u}}

L (1) = min {DFN (1), min {L (4)}} = min {1, L (4)} = min {1, 1} = 1

L (4) = min {DFN (4), min {L (3)}} = min {2, L (3)} = min {2, 1} = 1

L (3) = min {DFN (3), min {L (10), L (9), L (2)}} =
= min {3, min {L (10), L (9), L (2)}} = min {3, min {4, 5, 1}} = 1

L (10) = min {DFN (10)} = 4

L (9) = min {DFN (9)} = 5

1 1

2 4

3 3

1 0 5 9 6 2

7 5

8 6 7 9

8 1 0

L (2) = min {DFN (2), min {L (5)}, min {DFN (1)}}
= min {6, min {L (5)}, 1} = min {6, 6, 1} = 1

L (5) = min {DFN (5), min {L (6), L (7)}} = min {7, 8, 6} = 6

L (6) = min {DFN (6)} = 8

L (7) = min {DFN (7), min {L (8}, min {DFN (2)}}

= min {9, L (8) , 6} = min {9, 6, 6} = 6

L (8) = min {DFN (8), min {DFN (5), DFN (2)}}

= min {10, min (7, 6)} = min {10, 6} = 6

Therefore, L (1: 10) = (1, 1, 1, 1, 6, 8, 6, 6, 5, 4)

Finding the Articulation Points:

Vertex 1: Vertex 1 is not an articulation point. It is a root node. Root is an articulation
point if it has two or more child nodes.

Vertex 2: is an articulation point as child 5 has L (5) = 6 and DFN (2) = 6,

So, the condition L (5) = DFN (2) is true.

Vertex 3: is an articulation point as child 10 has L (10) = 4 and DFN (3) = 3,

So, the condition L (10) > DFN (3) is true.

Vertex 4: is not an articulation point as child 3 has L (3) = 1 and DFN (4) = 2,

So, the condition L (3) > DFN (4) is false.

Vertex 5: is an articulation point as child 6 has L (6) = 8, and DFN (5) = 7,
So, the condition L (6) > DFN (5) is true.

Vertex 7: is not an articulation point as child 8 has L (8) = 6, and DFN (7) = 9,

So, the condition L (8) > DFN (7) is false.

Vertex 6, Vertex 8, Vertex 9 and Vertex 10 are leaf nodes.

Therefore, the articulation points are {2, 3, 5}.

Example:

For the following graph identify the articulation points and Biconnected components:

1

2

G ra p h

D F S s p a n ni n g T re e

V ert e x

1
 2

2 1 3

3 2 5 6 4

4 3 7 8

5

3

6 3

7 4 8

8 4 7

Adj ac e nc y List

L (u) = min {DFN (u), min {L (w) w is a child of u}, min {DFN (w) w is a vertex

to which there is back edge from u}}

L (1) = min {DFN (1), min {L (2)}} = min {1, L (2)} = min {1, 2} = 1

L (2) = min {DFN (2), min {L (3)}} = min {2, L (3)} = min {2, 3} = 2

L (3) = min {DFN (3), min {L (4), L (5), L (6)}} = min {3, min {6, 4, 5}} = 3

L (4) = min {DFN (4), min {L (7)} = min {6, L (7)} = min {6, 6} = 6

L (5) = min {DFN (5)} = 4

L (6) = min {DFN (6)} = 5

L (7) = min {DFN (7), min {L (8)}} = min {7, 6} = 6

L (8) = min {DFN (8), min {DFN (4)}} = min {8, 6} = 6

Therefore, L (1: 8) = {1, 2, 3, 6, 4, 5, 6, 6}

Finding the Articulation Points:

Check for the condition if L (w) > DFN (u) is true, where w is any child of u.

Vertex 1: Vertex 1 is not an articulation point.

It is a root node. Root is an articulation point if it has two or more child

nodes.

Vertex 2: is an articulation point as L (3) = 3 and DFN (2) = 2.

So, the condition is true

Vertex 3: is an articulation Point as:

I. L (5) = 4 and DFN (3) = 3

II. L (6) = 5 and DFN (3) = 3 and

III. L (4) = 6 and DFN (3) = 3

So, the condition true in above cases

Vertex 4: is an articulation point as L (7) = 6 and DFN (4) = 6.
So, the condition is true

Vertex 7: is not an articulation point as L (8) = 6 and DFN (7) = 7.

So, the condition is False

Vertex 5, Vertex 6 and Vertex 8 are leaf nodes.

Therefore, the articulation points are {2, 3, 4}.

Example:

For the following graph identify the articulation points and Biconnected components:

1 1

2 2

3 3

4 4

5 5 7 8

Graph 6 6 Depth First

Spanning Tree

7 8

DFN (1: 8) = {1, 2, 3, 4, 5, 6, 8, 7}

V ert e x

1

2

1

3

3 2 4 7

4 1 3 5 6 7 8

5 1 4 6

6 4 5 8

7 3 4

8

4

6

Adj ac e nc y List

L (u) = min {DFN (u), min {L (w) w is a child of u}, min {DFN (w) w is a vertex

to which there is back edge from u}}

L (1) = min {DFN (1), min {L (2)}}

= min {1, L (2)} = 1

L (2) = min {DFN (2), min {L (3)}} = min {2, L (3)} = min{2, 1}= 11

L (3) = min {DFN (3), min {L (4)}} = min {3, L (4)} = min {3, L (4)}
= min {3, 1} = 1

L (4) = min {DFN (4), min {L (5), L (7)}, min {DFN (1)}}
= min {4, min {L (5), L (7)}, 1} = min {4, min {1, 3}, 1}

= min {4, 1, 1} = 1

L (5) = min {DFN (5), min {L (6)}, min {DFN (1)}} = min {5, L (6), 1}

= min {5, 4, 1} = 1

L (6) = min {DFN (6), min {L (8)}, min {DFN (4)}} = min(6, L (8), 4}

= min(6, 4, 4} = 4

L (7) = min {DFN (7), min {DFN (3)}} = min {8, 3} = 3

L (8) = min {DFN (8), min {DFN (4)}} = min {7, 4} = 4

Therefore, L (1: 8) = {1, 1, 1, 1, 1, 4, 3, 4}

Finding the Articulation Points:

Check for the condition if L (w) > DFN (u) is true, where w is any child of u.

Vertex 1: is not an articulation point.

It is a root node. Root is an articulation point if it has two or more child
nodes.

Vertex 2: is not an articulation point. As L (3) = 1 and DFN (2) = 2.

So, the condition is False.

Vertex 3: is not an articulation Point as L (4) = 1 and DFN (3) = 3.

So, the condition is False.

Vertex 4: is not an articulation Point as:

L (3) = 1 and DFN (2) = 2 and

L (7) = 3 and DFN (4) = 4

So, the condition fails in both cases.

Vertex 5: is not an Articulation Point as L (6) = 4 and DFN (5) = 6.

So, the condition is False

Vertex 6: is not an Articulation Point as L (8) = 4 and DFN (6) = 7.

So, the condition is False

Vertex 7: is a leaf node.

Vertex 8: is a leaf node.

So they are no articulation points.

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 6

Unit - II

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

AND/OR GRAPH: CO2

And/or graph is a specialization of hypergraph which connects nodes by sets of arcs
rather than by a single arcs. A hypergraph is defined as follows:

A hypergraph consists of:

N, a set of nodes,

H, a set of hyperarcs defined by ordered pairs, in which the first implement of

the pair is a node of N and the second implement is the subset of N.

An ordinary graph is a special case of hypergraph in which all the sets of descendent

nodes have a cardinality of 1.

Hyperarcs also known as K-connectors, where K is the cardinality of the set of

decendent nodes. If K = 1, the descendent may be thought of as an OR nodes. If K >

1, the elements of the set of decendents may be thought of as AND nodes. In this

case the connector is drawn with individual edges from the parent node to each of the

decendent nodes; these individual edges are then joined with a curved link.

Example 1:

Draw an And/Or graph for the following prepositions:

1. A

2. B

3. C
4. A ^ B -> D
5. A ^ C -> E

6. B ^ D -> F

7. F -> G

8. A ^ E -> H

C A B

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 1

Unit - III

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Divide and Conquer General Method: CO3

Divide and conquer is a design strategy which is well known to breaking

down efficiency barriers. When the method applies, it often leads to a large

improvement in time complexity. For example, from O (n2) to O (n log n) to

sort the elements.

Divide and conquer strategy is as follows: divide the problem instance into

two or more smaller instances of the same problem, solve the smaller

instances recursively, and assemble the solutions to form a solution of the

original instance. The recursion stops when an instance is reached which is

too small to divide. When dividing the instance, one can either use whatever

division comes most easily to hand or invest time in making the division

carefully so that the assembly is simplified.

Divide and conquer algorithm consists of two parts:

Divide : Divide the problem into a number of sub problems. The sub

problems are solved recursively.
Conquer : The solution to the original problem is then formed from the

solutions to the sub problems (patching together the
answers).

Traditionally, routines in which the text contains at least two recursive calls

are called divide and conquer algorithms, while routines whose text contains

only one recursive call are not. Divide–and–conquer is a very powerful use

of recursion.

Control Abstraction of Divide and Conquer

A control abstraction is a procedure whose flow of control is clear but whose

primary operations are specified by other procedures whose precise

meanings are left undefined. The control abstraction for divide and conquer

technique is DANDC(P), where P is the problem to be solved.

DANDC (P)

{

if SMALL (P) then

return S (p); else
{

divide p into smaller instances p1, p2, ….
Pk, k 1; apply DANDC to each of these
sub problems;
return (COMBINE (DANDC (p1) , DANDC (p2),…., DANDC (pk));

}

}

SMALL (P) is a Boolean valued function which determines whether the input

size is small enough so that the answer can be computed without splitting. If

this is so function ‘S’ is invoked otherwise, the problem ‘p’ into smaller sub

problems. These sub problems p1, p2, . . . , pk are solved by recursive

application of DANDC.

If the sizes of the two sub problems are approximately equal then the
computing time of DANDC is:

 g (n)
T (n) =

2 T(n/2) f (n)

n small

otherwise

Where, T (n) is the time for DANDC on ‘n’ inputs

g (n) is the time to complete the answer directly for small

inputs and f (n) is the time for Divide and Combine

Binary Search

If we have ‘n’ records which have been ordered by keys so that x1 < x2 < … <
xn . When we are given a element ‘x’, binary search is used to find the
corresponding element from the list. In case ‘x’ is present, we have to
determine a value ‘j’ such that a[j] = x (successful search). If ‘x’ is not in the
list then j is to set to zero (un successful search).

In Binary search we jump into the middle of the file, where we find key a[mid],

and compare ‘x’ with a[mid]. If x = a[mid] then the desired record has been

found. If x < a[mid] then ‘x’ must be in that portion of the file that precedes

a[mid], if there at all. Similarly, if a[mid] > x, then further search is only

necessary in that past of the file which follows a[mid]. If we use recursive

procedure of finding the middle key a[mid] of the un-searched portion of a file,

then every un-successful comparison of ‘x’ with a[mid] will eliminate roughly

half the un-searched portion from consideration.

Since the array size is roughly halved often each comparison between ‘x’ and

a[mid], and since an array of length ‘n’ can be halved only about log2n times

before reaching a trivial length, the worst case complexity of Binary search is
about log2n

BINSRCH (a, n, x)
// array a(1 : n) of elements in increasing order, n 0,

// determine whether ‘x’ is present, and if so, set j such that x = a(j)

// else return j

{

low :=1 ; high

:=n ; while (low

< high) do
{

mid :=|(low + high)/2|

if (x < a [mid]) then high:=mid –

1; else if (x > a [mid]) then low:=

mid + 1
else return mid;

}

return 0;

}

low and high are integer variables such that each time through the loop either

‘x’ is found or low is increased by at least one or high is decreased by at least

one. Thus we have two sequences of integers approaching each other and

eventually low will become greater than high causing termination in a finite

number of steps if ‘x’ is not present.

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 2

Unit - III

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Merge Sort: CO3

Merge sort algorithm is a classic example of divide and conquer. To sort an

array, recursively, sort its left and right halves separately and then merge

them. The time complexity of merge mort in the best case, worst case and

average case is O(n log n) and the number of comparisons used is nearly

optimal.

This strategy is so simple, and so efficient but the problem here is that there

seems to be no easy way to merge two adjacent sorted arrays together in place

(The result must be build up in a separate array).

The fundamental operation in this algorithm is merging two sorted lists.

Because the lists are sorted, this can be done in one pass through the input, if

the output is put in a third list.

The basic merging algorithm takes two input arrays ‘a’ and ’b’, an output array

‘c’, and three counters, a ptr, b ptr and c ptr, which are initially set to the

beginning of their respective arrays. The smaller of a[a ptr] and b[b ptr] is

copied to the next entry in ‘c’, and the appropriate counters are advanced.

When either input list is exhausted, the remainder of the other list is copied to

‘c’.

To illustrate how merge process works. For example, let us consider the array

‘a’ containing 1, 13, 24, 26 and ‘b’ containing 2, 15, 27, 38. First a comparison

is done between 1 and 2. 1 is copied to ‘c’. Increment a ptr and c ptr.

and then 2 and 13 are compared. 2 is added to ‘c’. Increment b ptr and c ptr.

1 2 3 4

1 13 24 26

h

ptr

5 6 7 8

2 15 27 28

j

ptr

1 2 3 4 5 6 7 8

1

i

ptr

1 2 3 4

1 13 24 26

 h

ptr

5 6 7 8

2 15 27 28

j

ptr

1 2 3 4 5 6 7 8

1 2

 i

ptr

then 13 and 15 are compared. 13 is added to ‘c’. Increment a ptr and c ptr.

24 and 15 are compared. 15 is added to ‘c’. Increment b ptr and c ptr.

24 and 27 are compared. 24 is added to ‘c’. Increment a ptr and c ptr.

26 and 27 are compared. 26 is added to ‘c’. Increment a ptr and c ptr.

As one of the lists is exhausted. The remainder of the b array is then copied to ‘c’.

h

ptr

Algorithm

Algorithm MERGESORT (low, high)

// a (low : high) is a global array to be sorted.
{

i

ptr

if (low < high)

{

mid := (low + high)/2 //finds where to split the set

MERGESORT(low, mid) //sort one subset

MERGESORT(mid+1, high) //sort the other subset
MERGE(low, mid, high) // combine the results

}

}

1 2 3 4

1 13 24 26

 h
ptr

5 6 7 8

2 15 27 28

 j
ptr

1 2 3 4 5 6 7 8

1 2 13

 i
ptr

1 2 3 4

1 13 24 26

 h

ptr

5 6 7 8

2 15 27 28

 j

ptr

1 2 3 4 5 6 7 8

1 2 13 15

 i

ptr

1 2 3 4

1 13 24 26

 h

ptr

5 6 7 8

2 15 27 28

 j

ptr

1 2 3 4 5 6 7 8

1 2 13 15 24

 i

ptr

1 2 3 4

1 13 24 26

 h

ptr

5 6 7 8

2 15 27 28

 j

ptr

1 2 3 4 5 6 7 8

1 2 13 15 24 26

 i

ptr

1 2 3 4

1 13 24 26

5 6 7 8

2 15 27 28

 j

ptr

1 2 3 4 5 6 7 8

1 2 13 15 24 26 27 28

Algorithm MERGE (low, mid, high)
// a (low : high) is a global array containing two sorted subsets

// in a (low : mid) and in a (mid + 1 : high).
// The objective is to merge these sorted sets into single sorted

// set residing in a (low : high). An auxiliary array B is used.
{

h :=low; i := low; j:= mid + 1;

while ((h < mid) and (J < high)) do
{

if (a[h] < a[j]) then
{

}

else
{

}

b[i] := a[h]; h := h + 1;

b[i] :=a[j]; j := j + 1;

i := i + 1;
}

if (h > mid) then
for k := j to high do

{

b[i] := a[k]; i := i + 1;

}
else

for k := h to mid do
{

b[i] := a[K]; i := i + l;
}

for k := low to high do

a[k] := b[k];

}

Example

For example let us select the following 8 entries 7, 2, 9, 4, 3, 8, 6, 1 to illustrate
merge sort algorithm:

7, 2, 9, 4 | 3, 8, 6, 1 1, 2, 3, 4, 6, 7, 8, 9

Tree Calls of MERGESORT(1, 8)

The following figure represents the sequence of recursive calls that are produced by

MERGESORT when it is applied to 8 elements. The values in each node are the values

of the parameters low and high.

Tree Calls of MERGE()

The tree representation of the calls to procedure MERGE by MERGESORT is as
follows:

Analysis of Merge Sort

We will assume that ‘n’ is a power of 2, so that we always split into even halves, so

we solve for the case n = 2k.

For n = 1, the time to merge sort is constant, which we will be denote by 1.

Otherwise, the time to merge sort ‘n’ numbers is equal to the time to do two

recursive merge sorts of size n/2, plus the time to merge, which is linear. The

equation says this exactly:

T(1) = 1

T(n) = 2 T(n/2) + n

This is a standard recurrence relation, which can be solved several ways. We will

solve by substituting recurrence relation continually on the right–hand side.

We have, T(n) = 2T(n/2) + n

1, 8

2, 2 1, 1

1, 2

4, 4 3, 3

3, 4

6, 6 5, 5

5, 6

8, 8 7, 7

7, 8

1, 1, 2 3, 3, 4 5, 5, 6 7, 7, 8

1, 4, 8

5, 6, 8 1, 2, 4

1, 4 5, 8

Since we can substitute n/2 into this main equation

2 T(n/2)

We have,

=

=

2 (2 (T(n/4)) + n/2)

4 T(n/4) + n

T(n/2) = 2 T(n/4) + n

T(n) = 4 T(n/4) + 2n

Again, by substituting n/4 into the main equation, we see that

4T (n/4) =
=

4 (2T(n/8)) + n/4
8 T(n/8) + n

So we have,

T(n/4) = 2 T(n/8) + n
T(n) = 8 T(n/8) + 3n

Continuing in this manner, we obtain:

T(n) = 2k T(n/2k) + K. n

As n = 2k, K = log2n, substituting this in the above equation

T (n) 2log 2
n

2
= n T(1) + n log n

= n log n + n

Representing this in O notation:

T(n) = O(n log n)

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 3

Unit - III

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Quick Sort

The main reason for the slowness of Algorithms like SIS is that all comparisons

and exchanges between keys in a sequence w1, w2, , wn take place between

adjacent pairs. In this way it takes a relatively long time for a key that is badly out
of place to work its way into its proper position in the sorted sequence.

Hoare his devised a very efficient way of implementing this idea in the early

1960’s that improves the O(n2) behavior of SIS algorithm with an expected

performance that is O(n log n).

In essence, the quick sort algorithm partitions the original array by rearranging it

into two groups. The first group contains those elements less than some arbitrary

chosen value taken from the set, and the second group contains those elements

greater than or equal to the chosen value.

The chosen value is known as the pivot element. Once the array has been

rearranged in this way with respect to the pivot, the very same partitioning is

recursively applied to each of the two subsets. When all the subsets have been

partitioned and rearranged, the original array is sorted.

The function partition() makes use of two pointers ‘i’ and ‘j’ which are moved
toward each other in the following fashion:

 Repeatedly increase the pointer ‘i’ until a[i] >= pivot.

 Repeatedly decrease the pointer ‘j’ until a[j] <= pivot.

 If j > i, interchange a[j] with a[i]

 Repeat the steps 1, 2 and 3 till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’
pointer crosses ‘j’ pointer, the position for pivot is found and place pivot
element in ‘j’ pointer position.

The program uses a recursive function quicksort(). The algorithm of quick
sort function sorts all elements in an array ‘a’ between positions ‘low’ and
‘high’.

 It terminates when the condition low >= high is satisfied. This condition

will be satisfied only when the array is completely sorted.

 Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now

it calls the partition function to find the proper position j of the element
x[low] i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], . .
. .
. . . x[j-1] and x[j+1], x[j+2], . . .x[high].

 It calls itself recursively to sort the left sub-array x[low], x[low+1],

. . x[j-1] between positions low and j-1 (where j is returned by

the partition function).

 It calls itself recursively to sort the right sub-array x[j+1], x[j+2],

. . . x[high] between positions j+1 and high.

Algorithm

Algorithm

QUICKSORT(low,

high)
/* sorts the elements a(low), , a(high) which reside in the global array A(1 :

n) into ascending order a (n + 1) is considered to be defined and must be
greater than all elements in a(1 : n); A(n + 1) = + */
{

if low < high then
{

j := PARTITION(a, low, high+1);

// J is the position of the partitioning element

QUICKSORT(low, j – 1);
QUICKSORT(j + 1 , high);

}
}

Algorithm PARTITION(a, m, p)

{

V a(m); i m; j p; // A (m) is the partition

element do
{

loop i := i + 1 until a(i) > v // i moves left to

right loop j := j – 1 until a(j) < v // p moves right to

left if (i < j) then INTERCHANGE(a, i, j)
} while (i > j);

a[m] :=a[j]; a[j] :=V; // the partition element belongs at position P

return j;
}

Algorithm INTERCHANGE(a, i, j)
{

P:=a[i];

a[i] :=

a[j]; a[j]

:= p;
}

Analysis of Quick Sort:

Like merge sort, quick sort is recursive, and hence its analysis requires solving a

recurrence formula. We will do the analysis for a quick sort, assuming a random

pivot (and no cut off for small files).

We will take T (0) = T (1) = 1, as in merge sort.

The running time of quick sort is equal to the running time of the two recursive

calls plus the linear time spent in the partition (The pivot selection takes only

constant time). This gives the basic quick sort relation:

T (n) = T (i) + T (n – i – 1) + C n - (1)

Where, i = |S1| is the number of elements in S1.

Worst Case Analysis

The pivot is the smallest element, all the time. Then i=0 and if we ignore T(0)=1,

which is insignificant, the recurrence is:

T (n) = T (n – 1) + C n n > 1 - (2)

Using equation – (1) repeatedly, thus

T (n – 1) = T (n – 2) + C (n – 1)

T (n – 2) = T (n – 3) + C (n – 2)

- - - - - - - -

T (2) = T (1) + C (2)

Adding up all these equations yields

T (n) T (1)

n

i
i 2

= O (n2) - (3)

Best Case Analysis

In the best case, the pivot is in the middle. To simply the math, we assume that the

two sub-files are each exactly half the size of the original and although this gives a

slight over estimate, this is acceptable because we are only interested in a Big – oh

answer.

T (n) = 2 T (n/2) + C n - (4)

Divide both sides by n

T(n)

n

T(n / 2) C
n / 2

- (5)

Substitute n/2 for ‘n’ in equation (5)

T(n / 2)

n / 2

T(n / 4) C
n / 4

- (6)

Substitute n/4 for ‘n’ in equation (6)

T(n / 4)

n / 4

T(n / 8) C
n / 8

- (7)

- - - - - - - -

1

- - - - - - - -

Continuing in this manner, we obtain:

T(2)

2

T(1) C

- (8)

We add all the equations from 4 to 8 and note that there are log n of them:

T(n)

n

T(1)

1

 C log n - (9)

Which yields, T (n) = C n log n + n = O(n log n) - (10)

This is exactly the same analysis as merge sort, hence we get the same

answer.

Average Case Analysis

The number of comparisons for first call on partition: Assume left_to_right moves

over k smaller element and thus k comparisons. So when right_to_left crosses

left_to_right it has made n-k+1 comparisons. So, first call on partition makes

n+1 comparisons. The average case complexity of quicksort is

T(n) = comparisons for first call on quicksort

+

{Σ 1<=nleft,nright<=n [T(nleft) + T(nright)]}n = (n+1) + 2 [T(0) +T(1) + T(2) +

----- + T(n-1)]/n

nT(n) = n(n+1) + 2 [T(0) +T(1) + T(2) + ----- + T(n-2) + T(n-1)]

(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) + ----- + T(n-2)] \

Subtracting both sides:

nT(n) –(n-1)T(n-1) = [n(n+1) – (n-1)n] + 2T(n-1) = 2n +

2T(n-1) nT(n) = 2n + (n-1)T(n-1) + 2T(n-1) = 2n + (n+1)T(n-

1)

T(n) = 2 + (n+1)T(n-1)/n

The recurrence relation

obtained is: T(n)/(n+1) =

2/(n+1) + T(n-1)/n

Using the method of subsititution:

T(n)/(n+1) = 2/(n+1) + T(n-1)/n

T(n-1)/n = 2/n + T(n-2)/(n-1)

T(n-2)/(n-1) = 2/(n-1) + T(n-3)/(n-2)

T(n-3)/(n-2) = 2/(n-2) + T(n-4)/(n-3)

. .

. .

T(3)/4 = 2/4 + T(2)/3

T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 + T(0)

Adding both sides:

T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2]

= [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] + T(0) +

[2/(n+1) + 2/n + 2/(n-1) + ---------- +2/4 + 2/3]

Cancelling the common terms:

T(n)/(n+1) = 2[1/2 +1/3 +1/4+--------------+1/n+1/(n+1)]

T(n) = (n+1)2[2k n 1
1/ k

=2(n+1) []

=2(n+1)[log (n+1) – log 2]
=2n log (n+1) + log (n+1)-2n log 2 –log 2

T(n)= O(n log n)

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 4

Unit - III

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Greedy Method : CO3

Greedy is the most straight forward design technique. Most of the problems have n

inputs and require us to obtain a subset that satisfies some constraints. Any subset

that satisfies these constraints is called a feasible solution. We need to find a feasible

solution that either maximizes or minimizes the objective function. A feasible solution

that does this is called an optimal solution.

The greedy method is a simple strategy of progressively building up a solution, one

element at a time, by choosing the best possible element at each stage. At each stage,

a decision is made regarding whether or not a particular input is in an optimal solution.

This is done by considering the inputs in an order determined by some selection

procedure. If the inclusion of the next input, into the partially constructed optimal

solution will result in an infeasible solution then this input is not added to the partial

solution. The selection procedure itself is based on some optimization measure. Several

optimization measures are plausible for a given problem. Most of them, however, will

result in algorithms that generate sub-optimal solutions. This version of greedy

technique is called subset paradigm. Some problems like Knapsack, Job sequencing

with deadlines and minimum cost spanning trees are based on subset paradigm.

For the problems that make decisions by considering the inputs in some order, each

decision is made using an optimization criterion that can be computed using decisions

already made. This version of greedy method is ordering paradigm. Some problems like

optimal storage on tapes, optimal merge patterns and single source shortest path are

based on ordering paradigm.

CONTROL ABSTRACTION

Algorithm Greedy (a, n)
// a(1 : n) contains the ‘n’ inputs

{

solution := ; // initialize the solution to empty

for i:=1 to n do
{

x := select (a);
if feasible (solution, x) then

solution := Union (Solution, x);

}
return solution;

}

Procedure Greedy describes the essential way that a greedy based algorithm will look,

once a particular problem is chosen and the functions select, feasible and union are

properly implemented.

The function select selects an input from ‘a’, removes it and assigns its value to ‘x’.
Feasible is a Boolean valued function, which determines if ‘x’ can be included into the

solution vector. The function Union combines ‘x’ with solution and updates the objective

function.

KNAPSACK PROBLEM

Let us apply the greedy method to solve the knapsack problem. We are given ‘n’
objects and a knapsack. The object ‘i’ has a weight wi and the knapsack has a capacity
‘m’. If a fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit of pi
xi is earned. The objective is to fill the knapsack that maximizes the total profit earned.

Since the knapsack capacity is ‘m’, we require the total weight of all chosen objects to
be at most ‘m’. The problem is stated as:

maximize

subject to

n

i 1

n

i 1

pi xi

ai xi M where, 0 < xi < 1 and 1 < i < n

The profits and weights are positive numbers.

Algorithm

If the objects are already been sorted into non-increasing order of p[i] / w[i] then the

algorithm given below obtains solutions corresponding to this strategy.

Algorithm GreedyKnapsack (m, n)

// P[1 : n] and w[1 : n] contain the profits and weights respectively of

// Objects ordered so that p[i] / w[i] > p[i + 1] / w[i + 1].

// m is the knapsack size and x[1: n] is the solution vector.

{

for i := 1 to n do x[i] := 0.0 // initialize x
U := m;
for i := 1 to n do

{

if (w(i) > U) then break;

x [i] := 1.0; U := U – w[i];
}

if (i < n) then x[i] := U / w[i];

}

Running time:

The objects are to be sorted into non-decreasing order of pi / wi ratio. But if we
disregard the time to initially sort the objects, the algorithm requires only O(n) time.

Example:

Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, p2, p3) =
(25, 24, 15) and (w1, w2, w3) = (18, 15, 10).

1. First, we try to fill the knapsack by selecting the objects in some order:

x1 x2 x3 wi xi pi xi

1/2 1/3 1/4 18 x 1/2 + 15 x 1/3 + 10 x 1/4
= 16.5

25 x 1/2 + 24 x 1/3 + 15 x 1/4 =
24.25

2. Select the object with the maximum profit first (p = 25). So, x1 = 1 and profit
earned is 25. Now, only 2 units of space is left, select the object with next

largest profit (p = 24). So, x2 = 2/15

x1 x2 x3 wi xi pi xi

1 2/15 0 18 x 1 + 15 x 2/15 = 20 25 x 1 + 24 x 2/15 = 28.2

3. Considering the objects in the order of non-decreasing weights wi.

x1 x2 x3 wi xi pi xi

0 2/3 1 15 x 2/3 + 10 x 1 = 20 24 x 2/3 + 15 x 1 = 31

4. Considered the objects in the order of the ratio pi / wi .

p1/w1 p2/w2 p3/w3

25/18 24/15 15/10

1.4 1.6 1.5

Sort the objects in order of the non-increasing order of the ratio pi / xi. Select the
object with the maximum pi / xi ratio, so, x2 = 1 and profit earned is 24. Now,
only 5 units of space is left, select the object with next largest pi / xi ratio, so x3 =
½ and the profit earned is 7.5.

x1 x2 x3 wi xi pi xi

0 1 1/2 15 x 1 + 10 x 1/2 = 20 24 x 1 + 15 x 1/2 = 31.5

This solution is the optimal solution.

 CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 5

Unit - III

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

4.4. OPTIMAL STORAGE ON TAPES

There are ‘n’ programs that are to be stored on a computer tape of length ‘L’. Each

program ‘i’ is of length li, 1 ≤ i ≤ n. All the programs can be stored on the tape if
and only if the sum of the lengths of the programs is at most ‘L’.

We shall assume that whenever a program is to be retrieved from this tape, the

tape is initially positioned at the front. If the programs are stored in the order i = i1,

i2,
, in, the time tJ needed to retrieve program iJ is proportional to

 l ik

1 k j

If all the programs are retrieved equally often then the expected or mean retrieval time
(MRT) is:

1
. t

n
1 J n

j

For the optimal storage on tape problem, we are required to find the permutation for

the ‘n’ programs so that when they are stored on the tape in this order the MRT is

minimized.

d (I)

n

J 1

J

K 1

l i k

Example

Let n = 3, (l1, l2, l3) = (5, 10, 3). Then find the optimal ordering?

Solution:

There are n! = 6 possible orderings. They are:

Ordering I d(I)

1, 2, 3 5 + (5 +10) +(5 + 10 + 3) = 38

1, 3, 2 5 + (5 + 3) + (5 + 3 + 10) = 31

2, 1, 3 10 + (10 + 5) + (10 + 5 + 3) = 43

2, 3, 1 10 + (10 + 3) + (10 + 3 + 5) = 41

3, 1, 2 3 + (3 + 5) + (3 + 5 + 10) = 29

3, 2, 1 3 + (3 + 10) + (3 + 10 + 5) = 34

From the above, it simply requires to store the programs in non-decreasing order

(increasing order) of their lengths. This can be carried out by using a efficient sorting

algorithm (Heap sort). This ordering can be carried out in O (n log n) time using heap

sort algorithm.

The tape storage problem can be extended to several tapes. If there are m 1 tapes,

To, ,Tm – 1, then the programs are to be distributed over these tapes.
m 1

The total retrieval time (RT) is
J 0

d(IJ)

The objective is to store the programs in such a way as to minimize RT.

The programs are to be sorted in non decreasing order of their lengths li’s, l1 < l2 < .. .
.. . . ln.
The first ‘m’ programs will be assigned to tapes To, ,Tm-1 respectively. The next ‘m’
programs will be assigned to T0, ,Tm-1 respectively. The general rule is that
program i is stored on tape Ti mod m.

Algorithm:

The algorithm for assigning programs to tapes is as follows:

Algorithm Store (n, m)
// n is the number of programs and m the number of tapes
{

j := 0; // next tape to store

on for i :=1 to n do
{

Print (‘append program’, i, ‘to permutation for tape’,
j); j := (j + 1) mod m;

}

}

On any given tape, the programs are stored in non-decreasing order of their lengths.

JOB SEQUENCING WITH DEADLINES

When we are given a set of ‘n’ jobs. Associated with each Job i, deadline di > 0 and
profit Pi > 0. For any job ‘i’ the profit pi is earned iff the job is completed by its
deadline. Only one machine is available for processing jobs. An optimal solution is
the feasible solution with maximum profit.

Sort the jobs in ‘j’ ordered by their deadlines. The array d [1 : n] is used to store the

deadlines of the order of their p-values. The set of jobs j [1 : k] such that j [r], 1 ≤ r
≤ k are the jobs in ‘j’ and d (j [1]) ≤ d (j[2]) ≤ . . . ≤ d (j[k]). To test whether J U
{i} is feasible, we have just to insert i into J preserving the deadline ordering and

then verify that d [J[r]] ≤ r, 1 ≤ r ≤ k+1.

Example:

Let n = 4, (P1, P2, P3, P4,) = (100, 10, 15, 27) and (d1 d2 d3 d4) = (2, 1, 2, 1). The
feasible solutions and their values are:

S. No Feasible Solution Procuring

sequence

Value Remarks

1 1,2 2,1 110

2 1,3 1,3 or 3,1 115

3 1,4 4,1 127 OPTIMAL

4 2,3 2,3 25

5 3,4 4,3 42

6 1 1 100

7 2 2 10

8 3 3 15

9 4 4 27

Algorithm:

The algorithm constructs an optimal set J of jobs that can be processed by
their deadlines.

Algorithm GreedyJob (d, J, n)

// J is a set of jobs that can be completed by their deadlines.

{

J := {1};
for i := 2 to n do

{

if (all jobs in J U {i} can be completed by their dead lines)

then J := J U {i};
}

}

 CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 6

Unit - III

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Graph Algorithms: CO3

Basic Definitions:

 Graph G is a pair (V, E), where V is a finite set (set of vertices) and E is a

finite set of pairs from V (set of edges). We will often denote n := |V|, m :=

|E|.

 Graph G can be directed, if E consists of ordered pairs, or undirected, if E

consists of unordered pairs. If (u, v) E, then vertices u, and v are adjacent.

 We can assign weight function to the edges: wG(e) is a weight of edge e E.

The graph which has such function assigned is called weighted.

 Degree of a vertex v is the number of vertices u for which (u, v) E (denote

deg(v)). The number of incoming edges to a vertex v is called in–degree

of the vertex (denote indeg(v)). The number of outgoing edges from a

vertex is called out-degree (denote outdeg(v)).

Representation of Graphs:

Consider graph G = (V, E), where V= {v1, v2,….,vn}.

Adjacency matrix represents the graph as an n x n matrix A = (ai,j), where

a i, j

 1,
 if (vi , v j) E,

 0, otherwise

The matrix is symmetric in case of undirected graph, while it may be asymmetric if

the graph is directed.

We may consider various modifications. For example for weighted graphs, we may

have

a i, j

 w (vi, v j),

 default,

if (vi , v j) E,

otherwise,

Where default is some sensible value based on the meaning of the weight function

(for example, if weight function represents length, then default can be , meaning

value larger than any other value).

Adjacency List: An array Adj [1 n] of pointers where for 1 < v < n, Adj [v]

points to a linked list containing the vertices which are adjacent to v (i.e. the vertices

that can be reached from v by a single edge). If the edges have weights then these

weights may also be stored in the linked list elements.

Paths and Cycles:

A path is a sequence of vertices (v1, v2, , vk), where for all i, (vi, vi+1) E. A
path is simple if all vertices in the path are distinct.

A (simple) cycle is a sequence of vertices (v1, v2, , vk, vk+1 = v1), where for
all i, (vi, vi+1) E and all vertices in the cycle are distinct except pair v1, vk+1.

Subgraphs and Spanning Trees:

Subgraphs: A graph G’ = (V’, E’) is a subgraph of graph G = (V, E) iff V’ V and E’
E.

The undirected graph G is connected, if for every pair of vertices u, v there exists a

path from u to v. If a graph is not connected, the vertices of the graph can be divided

into connected components. Two vertices are in the same connected component iff

they are connected by a path.

Tree is a connected acyclic graph. A spanning tree of a graph G = (V, E) is a tree

that contains all vertices of V and is a subgraph of G. A single graph can have multiple

spanning trees.

Lemma 1: Let T be a spanning tree of a graph G. Then

1. Any two vertices in T are connected by a unique simple path.

2. If any edge is removed from T, then T becomes disconnected.

3. If we add any edge into T, then the new graph will contain a cycle.

4. Number of edges in T is n-1.

Minimum Spanning Trees (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the

vertex set of the given graph, and whose edge set is a subset of the edge set of the

given graph. i.e., any connected graph will have a spanning tree.

Weight of a spanning tree w (T) is the sum of weights of all edges in T. The Minimum

spanning tree (MST) is a spanning tree with the smallest possible weight.

G:

A gra p h G:

T h re e

(of

ma n y

p o s s ib l e)

s p a n n in g

t re e s

f ro m

gra p h

G:

2

2

 4

G: 3 5 3

 6

 1 1

A w e ig ht e d gra p h G: T h e min i ma l s p a n n in g t re e f ro m w e ig ht e d gra p h G:

Here are some examples:

To explain further upon the Minimum Spanning Tree, and what it applies to, let's
consider a couple of real-world examples:

1. One practical application of a MST would be in the design of a network. For

instance, a group of individuals, who are separated by varying distances, wish

to be connected together in a telephone network. Although MST cannot do

anything about the distance from one connection to another, it can be used to

determine the least cost paths with no cycles in this network, thereby

connecting everyone at a minimum cost.

2. Another useful application of MST would be finding airline routes. The vertices of
the graph would represent cities, and the edges would represent routes between
the cities. Obviously, the further one has to travel, the more it will cost, so MST
can be applied to optimize airline routes by finding the least costly paths with no
cycles.

To explain how to find a Minimum Spanning Tree, we will look at two algorithms: the

Kruskal algorithm and the Prim algorithm. Both algorithms differ in their methodology,

but both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim’s
algorithm uses vertex connections in determining the MST.

Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e.

picking an edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the

shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges

have been added. Sometimes two or more edges may have the same cost. The order in

which the edges are chosen, in this case, does not matter. Different MSTs may result,

but they will all have the same total cost, which will always be the minimum cost.

Algorithm:

The algorithm for finding the MST, using the Kruskal’s method is as follows:

Algorithm Kruskal (E, cost, n, t)

// E is the set of edges in G. G has n vertices. cost [u, v] is the

// cost of edge (u, v). ‘t’ is the set of edges in the minimum-cost spanning tree.

// The final cost is returned.

{

Construct a heap out of the edge costs using heapify;

for i := 1 to n do parent [i] := -1;
// Each vertex is in a different set.

i := 0; mincost := 0.0;

while ((i < n -1) and (heap not empty)) do

{

Delete a minimum cost edge (u, v) from the heap and

re-heapify using Adjust;

j := Find (u); k := Find (v);

if (j k) then
{

i := i + 1;

t [i, 1] := u; t [i, 2] := v;

mincost :=mincost + cost [u, v];

Union (j, k);
}

}

if (i n-1) then write ("no spanning tree");

else return mincost;
}

Running time:

 The number of finds is at most 2e, and the number of unions at most n-1.
Including the initialization time for the trees, this part of the algorithm has a
complexity that is just slightly more than O (n + e).

 We can add at most n-1 edges to tree T. So, the total time for operations on T is

O(n).

Summing up the various components of the computing times, we get O (n + e log e) as

asymptotic complexity

Example 1:

1
 1 0

2

4 5

30

50

4 0

3 5

 25

55

20

15

Arrange all the edges in the increasing order of their costs:

Cost 10 15 20 25 30 35 40 45 50 55

Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6)

The edge set T together with the vertices of G define a graph that has up to n

connected components. Let us represent each component by a set of vertices in it.

These vertex sets are disjoint. To determine whether the edge (u, v) creates a cycle,

we need to check whether u and v are in the same vertex set. If so, then a cycle is

created. If not then no cycle is created. Hence two Finds on the vertex sets suffice.

When an edge is included in T, two components are combined into one and a union is

to be performed on the two sets.

Edge

(1, 2)

(3, 6)

(4, 6)

(2, 6)

Cost

10

15

20

25

Spanning Forest

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5

6

1 2 3 5

4 6

1 2 5

4 3

6

Edge Sets

{1}, {2}, {3},

{4}, {5}, {6}

{1, 2}, {3}, {4},
{5}, {6}

{1, 2}, {3, 6},
{4}, {5}

{1, 2}, {3, 4, 6},

{5}

{1, 2, 3, 4, 6},

{5}

Remarks

The vertices 1 and

2 are in different
sets, so the edge
is combined

The vertices 3 and

6 are in different

sets, so the edge

is combined

The vertices 4 and

6 are in different
sets, so the edge
is combined

The vertices 2 and

6 are in different
sets, so the edge
is combined

 The vertices 1 and

(1, 4) 30 Reject 4 are in the same
 set, so the edge is
 rejected

(3, 5)

35

1

2

The vertices 3 and

 5 are in the same

4 5 3

6

{1, 2, 3, 4, 5, 6} set, so the edge is
combined

 CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 7

Unit - III

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM: CO3

A given graph can have many spanning trees. From these many spanning trees, we

have to select a cheapest one. This tree is called as minimal cost spanning tree.

Minimal cost spanning tree is a connected undirected graph G in which each edge is

labeled with a number (edge labels may signify lengths, weights other than costs).

Minimal cost spanning tree is a spanning tree for which the sum of the edge labels

is as small as possible

The slight modification of the spanning tree algorithm yields a very simple algorithm

for finding an MST. In the spanning tree algorithm, any vertex not in the tree but

connected to it by an edge can be added. To find a Minimal cost spanning tree, we

must be selective - we must always add a new vertex for which the cost of the new

edge is as small as possible.

This simple modified algorithm of spanning tree is called prim's algorithm for finding

an Minimal cost spanning tree.

Prim's algorithm is an example of a greedy algorithm.

 Algorithm Prim (E, cost, n, t)
// E is the set of edges in G. cost [1:n, 1:n] is the cost
// adjacency matrix of an n vertex graph such that cost [i, j] is

// either a positive real number or if no edge (i, j) exists.

// A minimum spanning tree is computed and stored as a set of

// edges in the array t [1:n-1, 1:2]. (t [i, 1], t [i, 2]) is an edge in

// the minimum-cost spanning tree. The final cost is returned.

{

Let (k, l) be an edge of minimum cost in

E; mincost := cost [k, l];
t [1, 1] := k; t [1, 2] := l;

for i :=1 to n do // Initialize

near if (cost [i, l] < cost [i, k]) then near [i] :=
l;

else near [i]

:= k; near [k]

:=near [l] := 0;
for i:=2 to n - 1 do // Find n - 2 additional edges for t.
{

Let j be an index such that near [j] 0 and

cost [j, near [j]] is minimum;

t [i, 1] := j; t [i, 2] := near [j];

mincost := mincost + cost [j, near

[j]]; near [j] := 0
for k:= 1 to n do // Update near[].

if ((near [k] 0) and (cost [k, near [k]] > cost [k,

j])) then near [k] := j;
}

return mincost;

}

Running time:

We do the same set of operations with dist as in Dijkstra's algorithm (initialize

structure, m times decrease value, n - 1 times select minimum). Therefore, we get O
(n2) time when we implement dist with array, O (n + E log n) when we implement it

with a heap.

For each vertex u in the graph we dequeue it and check all its neighbors in (1 + deg

(u)) time. Therefore the running time is:

 1degv
 n degv (n m)

 v V v V

 CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 7

Unit - III

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

The Single Source Shortest-Path Problem: DIJKSTRA'S ALGORITHMS: CO3

In the previously studied graphs, the edge labels are called as costs, but here we think

them as lengths. In a labeled graph, the length of the path is defined to be the sum of

the lengths of its edges.

In the single source, all destinations, shortest path problem, we must find a shortest

path from a given source vertex to each of the vertices (called destinations) in the

graph to which there is a path.

Dijkstra’s algorithm is similar to prim's algorithm for finding minimal spanning trees.

Dijkstra’s algorithm takes a labeled graph and a pair of vertices P and Q, and finds the

shortest path between then (or one of the shortest paths) if there is more than one.
The principle of optimality is the basis for Dijkstra’s algorithms.

Dijkstra’s algorithm does not work for negative edges at all.

The figure lists the shortest paths from vertex 1 for a five vertex weighted digraph.

8 0

2

3

4

Graph
6

Shortest Paths

Algorithm:

Algorithm Shortest-Paths (v, cost, dist, n)
// dist [j], 1 < j < n, is set to the length of the shortest path
// from vertex v to vertex j in the digraph G with n vertices.

// dist [v] is set to zero. G is represented by its
// cost adjacency matrix cost [1:n, 1:n].

{

for i :=1 to n do

{

S [i] := false; // Initialize S.
dist [i] :=cost [v, i];

}

S[v] := true; dist[v] := 0.0; // Put v in S.

for num := 2 to n – 1 do
{

Determine n - 1 paths from v.

Choose u from among those vertices not in S such that dist[u] is minimum;

S[u] := true; // Put u is S.

 4
2

for (each w adjacent to u with S [w] = false) do

if (dist [w] > (dist [u] + cost [u, w]) then // Update distances
dist [w] := dist [u] + cost [u, w];

}

}

Running time:

Depends on implementation of data structures for dist.

 Build a structure with n elements A

 at most m = E times decrease the value of an item mB

 ‘n’ times select the smallest value nC

 For array A = O (n); B = O (1); C = O (n) which gives O (n2) total.

 For heap A = O (n); B = O (log n); C = O (log n) which gives O

(n + m log n) total.

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 1

Unit - IV

Year and Semester: IIyr &II Sem
A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Dynamic Programming General method: CO4

Dynamic programming is a name, coined by Richard Bellman in 1955. Dynamic
programming, as greedy method, is a powerful algorithm design technique that can

be used when the solution to the problem may be viewed as the result of a sequence
of decisions. In the greedy method we make irrevocable decisions one at a time,
using a greedy criterion. However, in dynamic programming we examine the decision
sequence to see whether an optimal decision sequence contains optimal decision

subsequence.

When optimal decision sequences contain optimal decision subsequences, we can

establish recurrence equations, called dynamic-programming recurrence equations,

that enable us to solve the problem in an efficient way.

Dynamic programming is based on the principle of optimality (also coined by
Bellman). The principle of optimality states that no matter whatever the initial state
and initial decision are, the remaining decision sequence must constitute an optimal

decision sequence with regard to the state resulting from the first decision. The

principle implies that an optimal decision sequence is comprised of optimal decision
subsequences. Since the principle of optimality may not hold for some formulations
of some problems, it is necessary to verify that it does hold for the problem being

solved. Dynamic programming cannot be applied when this principle does not hold.

The steps in a dynamic programming solution are:

 Verify that the principle of optimality holds

 Set up the dynamic-programming recurrence equations

 Solve the dynamic-programming recurrence equations for the value of the

optimal solution.

 Perform a trace back step in which the solution itself is constructed.

Dynamic programming differs from the greedy method since the greedy method
produces only one feasible solution, which may or may not be optimal, while dynamic

programming produces all possible sub-problems at most once, one of which
guaranteed to be optimal. Optimal solutions to sub-problems are retained in a table,
thereby avoiding the work of recomputing the answer every time a sub-problem is

encountered

The divide and conquer principle solve a large problem, by breaking it up into smaller

problems which can be solved independently. In dynamic programming this principle
is carried to an extreme: when we don't know exactly which smaller problems to
solve, we simply solve them all, then store the answers away in a table to be used
later in solving larger problems. Care is to be taken to avoid recomputing previously

computed values, otherwise the recursive program will have prohibitive complexity.
In some cases, the solution can be improved and in other cases, the dynamic
programming technique is the best approach.

Two difficulties may arise in any application of dynamic programming:

1. It may not always be possible to combine the solutions of smaller problems to

form the solution of a larger one.

2. The number of small problems to solve may be un-acceptably large.

There is no characterized precisely which problems can be effectively solved with

dynamic programming; there are many hard problems for which it does not seen to
be applicable, as well as many easy problems for which it is less efficient than
standard algorithms.

5.1 MULTI STAGE GRAPHS

A multistage graph G = (V, E) is a directed graph in which the vertices are

partitioned into k > 2 disjoint sets Vi, 1 < i < k. In addition, if <u, v> is an edge in E,
then u Vi and v Vi+1 for some i, 1 < i < k.

Let the vertex ‘s’ is the source, and ‘t’ the sink. Let c (i, j) be the cost of edge <i, j>.
The cost of a path from ‘s’ to ‘t’ is the sum of the costs of the edges on the path. The
multistage graph problem is to find a minimum cost path from ‘s’ to ‘t’. Each set Vi
defines a stage in the graph. Because of the constraints on E, every path from ‘s’ to
‘t’ starts in stage 1, goes to stage 2, then to stage 3, then to stage 4, and so on, and
eventually terminates in stage k.

A dynamic programming formulation for a k-stage graph problem is obtained by first

noticing that every s to t path is the result of a sequence of k – 2 decisions. The ith

decision involves determining which vertex in vi+1, 1 < i < k - 2, is to be on the
path. Let c (i, j) be the cost of the path from source to destination. Then using the
forward approach, we obtain:

cost (i, j) = min {c (j, l) + cost (i + 1, l)}

l Vi + 1

<j, l> E

ALGORITHM:

Algorithm Fgraph (G, k, n, p)

// The input is a k-stage graph G = (V, E) with n vertices
// indexed in order or stages. E is a set of edges and c [i, j]
// is the cost of (i, j). p [1 : k] is a minimum cost path.

{
cost [n] := 0.0;
for j:= n - 1 to 1 step – 1 do

{ // compute cost [j]

let r be a vertex such that (j, r) is an edge

of G and c [j, r] + cost [r] is minimum;
cost [j] := c [j, r] + cost [r];
d [j] := r:

}

p [1] := 1; p [k] := n; // Find a minimum cost path.

for j := 2 to k - 1 do p [j] := d [p [j - 1]];
}

The multistage graph problem can also be solved using the backward approach.
Let bp(i, j) be a minimum cost path from vertex s to j vertex in Vi. Let Bcost(i, j) be
the cost of bp(i, j). From the backward approach we obtain:

Bcost (i, j) = min { Bcost (i –1, l) + c (l, j)}

l Vi - 1
<l, j> E

Algorithm Bgraph (G, k, n, p)
// Same function as Fgraph

{
Bcost [1] := 0.0;
for j := 2 to n do

{ // Compute Bcost [j].

Let r be such that (r, j) is an edge of
G and Bcost [r] + c [r, j] is minimum;
Bcost [j] := Bcost [r] + c [r, j];
D [j] := r;

} //find a minimum cost path
p [1] := 1; p [k] := n;

for j:= k - 1 to 2 do p [j] := d [p [j + 1]];

}

Complexity Analysis:

The complexity analysis of the algorithm is fairly straightforward. Here, if G has E
edges, then the time for the first for loop is (V +E).

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 2

Unit - IV

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

All pairs shortest paths: CO3

In the all pairs shortest path problem, we are to find a shortest path between every
pair of vertices in a directed graph G. That is, for every pair of vertices (i, j), we are

to find a shortest path from i to j as well as one from j to i. These two paths are the

same when G is undirected.

When no edge has a negative length, the all-pairs shortest path problem may be
solved by using Dijkstra’s greedy single source algorithm n times, once with each of
the n vertices as the source vertex.

The all pairs shortest path problem is to determine a matrix A such that A (i, j) is the
length of a shortest path from i to j. The matrix A can be obtained by solving n

single-source problems using the algorithm shortest Paths. Since each application of
this procedure requires O (n2) time, the matrix A can be obtained in O (n3) time.

The dynamic programming solution, called Floyd’s algorithm, runs in O (n3) time.

Floyd’s algorithm works even when the graph has negative length edges (provided
there are no negative length cycles).

The shortest i to j path in G, i ≠ j originates at vertex i and goes through some
intermediate vertices (possibly none) and terminates at vertex j. If k is an
intermediate vertex on this shortest path, then the subpaths from i to k and from k

to j must be shortest paths from i to k and k to j, respectively. Otherwise, the i to j
path is not of minimum length. So, the principle of optimality holds. Let Ak (i, j)
represent the length of a shortest path from i to j going through no vertex of index
greater than k, we obtain:

Ak (i, j) = {min {min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)}
1<k<n

Algorithm All Paths (Cost, A, n)

// cost [1:n, 1:n] is the cost adjacency matrix of a graph which

// n vertices; A [I, j] is the cost of a shortest path from vertex
// i to vertex j. cost [i, i] = 0.0, for 1 < i < n.
{

for i := 1 to n do
for j:= 1 to n do

A [i, j] := cost [i, j]; // copy cost into A.

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do

A [i, j] := min (A [i, j], A [i, k] + A [k, j]);

}

Complexity Analysis: A Dynamic programming algorithm based on this recurrence
involves in calculating n+1 matrices, each of size n x n. Therefore, the algorithm has
a complexity of O (n3).

6 2

Example 1:

Given a weighted digraph G = (V, E) with weight. Determine the length of the

shortest path between all pairs of vertices in G. Here we assume that there are no
cycles with zero or negative cost.

6

1
4

2 0

4 11

3 1 1 2
Cost adjacency matrix (A0) =

0

3

General formula: min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)}
1<k<n

Solve the problem for different values of k = 1, 2 and 3

Step 1: Solving the equation for, k = 1;

3 0

A1 (1, 1) = min {(Ao (1, 1) + Ao (1, 1)), c (1, 1)} = min {0 + 0, 0} = 0

A1 (1, 2) = min {(Ao (1, 1) + Ao (1, 2)), c (1, 2)} = min {(0 + 4), 4} = 4

A1 (1, 3) = min {(Ao (1, 1) + Ao (1, 3)), c (1, 3)} = min {(0 + 11), 11} = 11

A1 (2, 1) = min {(Ao (2, 1) + Ao (1, 1)), c (2, 1)} = min {(6 + 0), 6} = 6

A1 (2, 2) = min {(Ao (2, 1) + Ao (1, 2)), c (2, 2)} = min {(6 + 4), 0)} = 0

A1 (2, 3) = min {(Ao (2, 1) + Ao (1, 3)), c (2, 3)} = min {(6 + 11), 2} = 2

A1 (3, 1) = min {(Ao (3, 1) + Ao (1, 1)), c (3, 1)} = min {(3 + 0), 3} = 3

A1 (3, 2) = min {(Ao (3, 1) + Ao (1, 2)), c (3, 2)} = min {(3 + 4), } = 7

A1 (3, 3) = min {(Ao (3, 1) + Ao (1, 3)), c (3, 3)} = min {(3 + 11), 0} = 0

A(1) =

0 4

6 0

3 7

11

0

Step 2: Solving the equation for, K = 2;

A2 (1, 1) = min {(A1 (1, 2) + A1 (2, 1), c (1, 1)} = min {(4 + 6), 0} = 0

A2 (1, 2) = min {(A1 (1, 2) + A1 (2, 2), c (1, 2)} = min {(4 + 0), 4} = 4

A2 (1, 3) = min {(A1 (1, 2) + A1 (2, 3), c (1, 3)} = min {(4 + 2), 11} = 6

A2 (2, 1) = min {(A (2, 2) + A (2, 1), c (2, 1)} = min {(0 + 6), 6} = 6

A2 (2, 2) = min {(A (2, 2) + A (2, 2), c (2, 2)} = min {(0 + 0), 0} = 0

A2 (2, 3) = min {(A (2, 2) + A (2, 3), c (2, 3)} = min {(0 + 2), 2} = 2

A2 (3, 1) = min {(A (3, 2) + A (2, 1), c (3, 1)} = min {(7 + 6), 3} = 3

A2 (3, 2) = min {(A (3, 2) + A (2, 2), c (3, 2)} = min {(7 + 0), 7} = 7

A2 (3, 3) = min {(A (3, 2) + A (2, 3), c (3, 3)} = min {(7 + 2), 0} = 0

A(2) =

0 4

6 0

3 7

6

0

Step 3: Solving the equation for, k = 3;

A3 (1, 1) = min {A2 (1, 3) + A2 (3, 1), c (1, 1)} = min {(6 + 3), 0} = 0

A3 (1, 2) = min {A2 (1, 3) + A2 (3, 2), c (1, 2)} = min {(6 + 7), 4} = 4

A3 (1, 3) = min {A2 (1, 3) + A2 (3, 3), c (1, 3)} = min {(6 + 0), 6} = 6

A3 (2, 1) = min {A2 (2, 3) + A2 (3, 1), c (2, 1)} = min {(2 + 3), 6} = 5

A3 (2, 2) = min {A2 (2, 3) + A2 (3, 2), c (2, 2)} = min {(2 + 7), 0} = 0

A3 (2, 3) = min {A2 (2, 3) + A2 (3, 3), c (2, 3)} = min {(2 + 0), 2} = 2

A3 (3, 1) = min {A2 (3, 3) + A2 (3, 1), c (3, 1)} = min {(0 + 3), 3} = 3

A3 (3, 2) = min {A2 (3, 3) + A2 (3, 2), c (3, 2)} = min {(0 + 7), 7} = 7

2

2

5 0

A3 (3, 3) = min {A2 (3, 3) + A2 (3, 3), c (3, 3)} = min {(0 + 0), 0} = 0

 0 4 6

A(3) =

2

3 7 0

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 3

Unit - IV

Year and Semester: IIyr &II Sem
A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

TRAVELLING SALESPERSON PROBLEM: CO4

Let G = (V, E) be a directed graph with edge costs Cij. The variable cij is defined such
that cij > 0 for all I and j and cij = if < i, j> E. Let |V| = n and assume n > 1. A
tour of G is a directed simple cycle that includes every vertex in V. The cost of a tour
is the sum of the cost of the edges on the tour. The traveling sales person problem is
to find a tour of minimum cost. The tour is to be a simple path that starts and ends
at vertex 1.

Let g (i, S) be the length of shortest path starting at vertex i, going through all

vertices in S, and terminating at vertex 1. The function g (1, V – {1}) is the length of
an optimal salesperson tour. From the principal of optimality it follows that:

g1, V - 1 min
2 k n

c1k g k, V 1, k -- 1

Generalizing equation 1, we obtain (for i S)

g i, S minci j
j S

 g i, S j -- 2

The Equation can be solved for g (1, V – 1}) if we know g (k, V – {1, k}) for all
choices of k.

Example 1:

For the following graph find minimum cost tour for the traveling salesperson
problem:

0

The cost adjacency matrix =
5

6

8

10 15

0 9

13 0

8 9

20
10

12

Let us start the tour from vertex 1:

g (1, V – {1}) = min {c1k + g (k, V – {1, K})} - (1)
2<k<n

More generally writing:

g (i, s) = min {cij + g (J, s – {J})} - (2)

Clearly, g (i,) = ci1 , 1 ≤ i ≤ n. So,

g (2,) = C21 = 5

g (3,) = C31 = 6

0

g (4,) = C41 = 8

Using equation – (2) we obtain:

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}, c13 + g (3, {2, 4}), c14 + g (4, {2, 3})}

g (2, {3, 4}) = min {c23 + g (3, {4}), c24 + g (4, {3})}
= min {9 + g (3, {4}), 10 + g (4, {3})}

g (3, {4}) = min {c34 + g (4,)} = 12 + 8 = 20

g (4, {3}) = min {c43 + g (3,)} = 9 + 6 = 15

Therefore, g (2, {3, 4}) = min {9 + 20, 10 + 15} = min {29, 25} = 25

g (3, {2, 4}) = min {(c32 + g (2, {4}), (c34 + g (4, {2})}

g (2, {4}) = min {c24 + g (4,)} = 10 + 8 = 18

g (4, {2}) = min {c42 + g (2,)} = 8 + 5 = 13

Therefore, g (3, {2, 4}) = min {13 + 18, 12 + 13} = min {41, 25} = 25

g (4, {2, 3}) = min {c42 + g (2, {3}), c43 + g (3, {2})}

g (2, {3}) = min {c23 + g (3, } = 9 + 6 = 15

g (3, {2}) = min {c32 + g (2, } = 13 + 5 = 18

Therefore, g (4, {2, 3}) = min {8 + 15, 9 + 18} = min {23, 27} = 23

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}), c13 + g (3, {2, 4}), c14 + g (4, {2, 3})}
= min {10 + 25, 15 + 25, 20 + 23} = min {35, 40, 43} = 35

The optimal tour for the graph has length = 35

The optimal tour is: 1, 2, 4, 3, 1.

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 3

Unit - IV

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

OPTIMAL BINARY SEARCH TREE:CO4

Let us assume that the given set of identifiers is {a1, . . . , an} with a1 < a2 < <
an. Let p (i) be the probability with which we search for ai. Let q (i) be the probability
that the identifier x being searched for is such that ai < x < ai+1, 0 < i < n (assume
a0 = - and an+1 = +). We have to arrange the identifiers in a binary search tree in
a way that minimizes the expected total access time.
In a binary search tree, the number of comparisons needed to access an element at

depth 'd' is d + 1, so if 'ai' is placed at depth 'di', then we want to minimize:
n

i 1

Pi (1 di) .

Let P (i) be the probability with which we shall be searching for 'ai'. Let Q (i) be the
probability of an un-successful search. Every internal node represents a point where
a successful search may terminate. Every external node represents a point where an
unsuccessful search may terminate.

The expected cost contribution for the internal node for 'ai' is:

P (i) * level (ai) .

Unsuccessful search terminate with I = 0 (i.e at an external node). Hence the cost
contribution for this node is:

Q (i) * level ((Ei) - 1)

The expected cost of binary search tree is:

n

i 1

n

P(i) * level (ai)
i 0

Q (i) * level ((Ei) 1)

Given a fixed set of identifiers, we wish to create a binary search tree organization.

We may expect different binary search trees for the same identifier set to have

different performance characteristics.

The computation of each of these c(i, j)’s requires us to find the minimum of m

quantities. Hence, each such c(i, j) can be computed in time O(m). The total time for
all c(i, j)’s with j – i = m is therefore O(nm – m2).

The total time to evaluate all the c(i, j)’s and r(i, j)’s is therefore:

 nm m2 O n3
1 st

m
o p

n

Example 1:

Let n = 4, and (a1, a2, a3, a4) = (do, if, need, while) Let P (1: 4) = (3, 3, 1, 1) and Q
(0: 4) = (2, 3, 1, 1, 1)

Solution:

Table for recording W (i, j), C (i, j) and R (i, j):

Column

Row
0 1 2 3 4

0 2, 0, 0 3, 0, 0 1, 0, 0 1, 0, 0, 1, 0, 0

1 8, 8, 1 7, 7, 2 3, 3, 3 3, 3, 4

2 12, 19, 1 9, 12, 2 5, 8, 3

3 14, 25, 2 11, 19, 2

4 16, 32, 2

This computation is carried out row-wise from row 0 to row 4. Initially, W (i, i) = Q
(i) and C (i, i) = 0 and R (i, i) = 0, 0 < i < 4.

Solving for C (0, n):

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 < i < 4; i = 0, 1, 2
and 3; i < k ≤ J. Start with i = 0; so j = 1; as i < k ≤ j, so the possible value for
k = 1

W (0, 1) = P (1) + Q (1) + W (0, 0) = 3 + 3 + 2 = 8

C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 8

R (0, 1) = 1 (value of 'K' that is minimum in the above equation).

Next with i = 1; so j = 2; as i < k ≤ j, so the possible value for k = 2

W (1, 2) = P (2) + Q (2) + W (1, 1) = 3 + 1 + 3 = 7
C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 7
R (1, 2) = 2

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k = 3

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 = 3
C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] = 3

R (2, 3) = 3

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k = 4

W (3, 4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 = 3
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] = 3
R (3, 4) = 4

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 < i < 3; i = 0,
1, 2; i < k ≤ J. Start with i = 0; so j = 2; as i < k ≤ J, so the possible values for k =
1 and 2.

W (0, 2) = P (2) + Q (2) + W (0, 1) = 3 + 1 + 8 = 12
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))}

= 12 + min {(0 + 7, 8 + 0)} = 19

R (0, 2) = 1

Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3.

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 7 = 9
C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3, 3)]}

= W (1, 3) + min {(0 + 3), (7 + 0)} = 9 + 3 = 12

R (1, 3) = 2

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4.

W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5

C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)]
= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 = 8

R (2, 4) = 3

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 < i < 2; i = 0, 1;

i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2
and 3.

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 = 14
C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2, 3)],

[C (0, 2) + C (3, 3)]}

= 14 + min {(0 + 12), (8 + 3), (19 + 0)} = 14 + 11 = 25

R (0, 3) = 2

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4.

W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 9 = 11
C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3, 4)],

[C (1, 3) + C (4, 4)]}

= 11 + min {(0 + 8), (7 + 3), (12 + 0)} = 11 + 8 = 19

R (1, 4) = 2

Fourth, Computing all C (i, j) such that j - i = 4; j = i + 4 and as 0 < i < 1; i = 0;
i < k ≤ J.

Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and 4.

a2
T 04

a1
T 01 T 24

a3

T 00 T 11 T 22 T 34

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16
C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)],

[C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]}

= 16 + min [0 + 19, 8 + 8, 19+3, 25+0] = 16 + 16 = 32
R (0, 4) = 2

From the table we see that C (0, 4) = 32 is the minimum cost of a binary search tree
for (a1, a2, a3, a4). The root of the tree 'T04' is 'a2'.

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and the
root of 'T24' is a3.

The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is
'a1'

The left and right sub trees for T24 are T22 and T34 respectively.

The root of T24 is 'a3'.

The root of T22 is null

The root of T34 is a4.

a4

Example 2:

Consider four elements a1, a2, a3 and a4 with Q0 = 1/8, Q1 = 3/16, Q2 = Q3 = Q4 =
1/16 and p1 = 1/4, p2 = 1/8, p3 = p4 =1/16. Construct an optimal binary search tree.
Solving for C (0, n):

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 < i < 4; i = 0, 1, 2
and 3; i < k ≤ J. Start with i = 0; so j = 1; as i < k ≤ j, so the possible value for
k = 1

W (0, 1) = P (1) + Q (1) + W (0, 0) = 4 + 3 + 2 = 9

C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 9 + [(0 + 0)] = 9

R (0, 1) = 1 (value of 'K' that is minimum in the above equation).

Next with i = 1; so j = 2; as i < k ≤ j, so the possible value for k = 2

W (1, 2) = P (2) + Q (2) + W (1, 1) = 2 + 1 + 3 = 6
C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 6 + [(0 + 0)] = 6
R (1, 2) = 2

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k = 3

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 = 3

C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] = 3

if

do re a d

wh ile

R (2, 3) = 3

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k = 4

W (3, 4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 = 3
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] = 3
R (3, 4) = 4

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 < i < 3; i = 0,
1, 2; i < k ≤ J

Start with i = 0; so j = 2; as i < k ≤ j, so the possible values for k = 1 and 2.

W (0, 2) = P (2) + Q (2) + W (0, 1) = 2 + 1 + 9 = 12
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))}

= 12 + min {(0 + 6, 9 + 0)} = 12 + 6 = 18
R (0, 2) = 1

Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3.

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 6 = 8
C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3, 3)]}

= W (1, 3) + min {(0 + 3), (6 + 0)} = 8 + 3 = 11
R (1, 3) = 2

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4.

W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5
C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)]

= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 = 8

R (2, 4) = 3

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 < i < 2; i = 0, 1;

i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2
and 3.

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 = 14
C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2, 3)],

[C (0, 2) + C (3, 3)]}
= 14 + min {(0 + 11), (9 + 3), (18 + 0)} = 14 + 11 = 25

R (0, 3) = 1

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4.

W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 8 = 10
C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3, 4)],

[C (1, 3) + C (4, 4)]}

= 10 + min {(0 + 8), (6 + 3), (11 + 0)} = 10 + 8 = 18

R (1, 4) = 2

Fourth, Computing all C (i, j) such that J - i = 4; j = i + 4 and as 0 < i < 1; i = 0;

i < k ≤ J. Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2,
3 and 4.

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16
C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)],

[C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]}

a2
T 04

a1
T 01 T 24

a3

T 00 T 11 T 22 T 34

= 16 + min [0 + 18, 9 + 8, 18 + 3, 25 + 0] = 16 + 17 = 33

R (0, 4) = 2

Table for recording W (i, j), C (i, j) and R (i, j)

Column
Row

0 1 2 3 4

0 2, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0, 1, 0, 0

1 9, 9, 1 6, 6, 2 3, 3, 3 3, 3, 4

2 12, 18, 1 8, 11, 2 5, 8, 3

3 14, 25, 2 11, 18, 2

4 16, 33, 2

From the table we see that C (0, 4) = 33 is the minimum cost of a binary search tree
for (a1, a2, a3, a4)

The root of the tree 'T04' is 'a2'.

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and the
root of 'T24' is a3.

The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is
'a1'

The left and right sub trees for T24 are T22 and T34 respectively.

The root of T24 is 'a3'.

The root of T22 is null.

The root of T34 is a4.

a4

Example 3:

WORD

A

PROBABILITY

4
B 2
C 1
D 3

E 5
F 2
G 1

a2

a1 a3

a4

and all other elements have zero probability.

Solving c(0,n):

First computing all c(i, j) such that j- i = 1;j = i +1 and as 0 ≤ i < 7; i = 0, 1, 2, 3,
4, 5 and 6; i < k ≤ j. Start with i = 0 ; so j = 1; as i < k ≤ j, so the possible value
for k = 1

W(0, 1) = P(1) + Q(1)+W(0, 0) = 4+0+0 = 4
C(0, 1) = W(0, 1)+ min {C (0, 0) + C(1, 1) }=4 + [(0 + 0)] = 4

R(0, 1) = 1

next with i = 1 ; so j = 2; as i < k ≤ j, so the possible value for k = 2

W(1, 2) = P(2) + Q(2)+W(1, 1) = 2+0+0 = 2
C(1, 2) = W(1, 2)+ min {C (1, 1) + C(2, 2) }=2 + [(0 + 0)] = 2
R(1, 2) = 2

next with i = 2 ; so j = 3; as i < k ≤ j, so the possible value for k = 3

W(2, 3) = P(3) + Q(3)+W(2, 2) = 1+0+0 = 1
C(2, 3) = W(2, 3)+ min {C (2, 2) + C(3, 3) }=1 + [(0 + 0)] = 1
R(2, 3) = 3

next with i = 3 ; so j = 4; as i < k ≤ j, so the possible value for k = 4

W(3, 4) = P(4) + Q(4)+W(3, 3) = 3+0+0 = 3
C(3, 4) = W(3, 4)+ min {C (3, 4) + C(4, 4) }=3 + [(0 + 0)] = 3

R(3, 4) = 4

next with i = 4 ; so j = 5; as i < k ≤ j, so the possible value for k = 5

W(4, 5) = P(5) + Q(5)+W(4, 4) = 5+0+0 = 5

C(4, 5) = W(4, 5)+ min {C (4, 4) + C(5, 5) }=5 + [(0 + 0)] = 5
R(4, 5) = 5

next with i = 5; so j = 6; as i < k ≤ j, so the possible value for k = 6

W(5, 6) = P(6) + Q(6)+W(5, 5) = 2+0+0 = 2
C(5, 6) = W(5, 6)+ min {C (5, 5) + C(6, 6) }=2 + [(0 + 0)] = 2
R(5, 6) = 6

next with i = 6; so j = 7; as i < k ≤ j, so the possible value for k = 7

W(6, 7) = P(7) + Q(7)+W(6, 6) = 1+0+0 = 1
C(6, 7) = W(6, 7)+ min {C (6, 6) + C(7, 7) }=1 + [(0 + 0)] = 1

R(6, 7) = 7

Second, computing all c(i, j) such that j - i = 2 ;j = i + 2 and as 0 ≤ i < 6; i = 0,
1, 2, 3, 4 and 5; i < k ≤ j; Start with i = 0 ; so j = 2; as i < k ≤ j, so the possible
values for k = 1 and 2.

W(0, 2) = P(2) + Q(2)+W(0, 1) = 2 + 0 + 4 = 6
C(0, 2) = W(0, 2)+ min {C (0, 0) + C(1, 2) ,C(0, 1) + C(2, 2)}

= 6 +min{ 0 + 2, 4 + 0} = 8

R(0, 2) = 1

next with i = 1 ; so j = 3; as i < k ≤ j, so the possible values for k = 2 and 3.

W(1, 3) = P(3) + Q(3) +W(1, 2) = 1+ 0 + 2 = 3
C(1, 3) = W(1, 3)+ min {C (1, 1) + C(2,3) ,C(1, 2) + C(3, 3)}

= 3 +min{ 0 + 1, 2 + 0} = 4

R(1, 3) = 2

next with i = 2 ; so j = 4; as i < k ≤ j, so the possible values for k = 3 and 4.

W(2, 4) = P(4) + Q(4) +W(2, 3) = 3+ 0 + 1 = 4
C(2, 4) = W(2, 4)+ min {C (2, 2) + C(3,4) ,C(2, 3) + C(4, 4)}

= 4 +min{ 0 + 3, 1 + 0} = 5
R(2, 4) = 4

next with i = 3 ; so j = 5; as i < k ≤ j, so the possible values for k = 4 and 5.

W(3, 5) = P(5) + Q(5)+W(3, 4) = 5+ 0 + 3 =8
C(3, 5) = W(3, 5)+ min {C (3, 3) + C(4,5) ,C(3,4) + C(5, 5)}

= 8 +min{ 0 + 5, 3 + 0} = 11

R(3, 5) = 5
next with i = 4 ; so j = 6; as i < k ≤ j, so the possible values for k = 5 and 6.

W(4, 6) = P(6) + Q(6)+W(4, 5) = 2+ 0 + 5 = 7
C(4, 6) = W(4, 6)+ min {C (4, 4) + C(5,6) ,C(4, 5) + C(6, 6)}

= 7 +min{ 0 + 2, 5 + 0} = 9

R(4, 6) = 5

next with i = 5 ; so j = 7; as i < k ≤ j, so the possible values for k = 6 and 7.

W(5, 7) = P(7) + Q(7)+W(5, 6) = 1+ 0 + 2 = 3

C(5, 7) = W(5, 7)+ min {C (5, 5) + C(6,7) ,C(5, 6) + C(7, 7)}
= 3 +min{ 0 + 1, 2 + 0} = 4

R(5, 7) = 6

Third, computing all c(i, j) such that j – i = 3 ;j = i + 3 and as 0 ≤ i < 5 ; i = 0, 1,
2, 3, 4 and I < k ≤ j.

Start with i = 0 ; so j = 3; as i < k ≤ j, so the possible values for k = 1,2 and 3.

W(0, 3) = P(3) + Q(3)+W(0, 2) = 1+ 0 + 6 = 7
C(0, 3) = W(0, 3)+ min {C (0, 0) + C(1,3) ,C(0, 1) + C(2, 3),C(0, 2) + C(3, 3)}

= 7 +min{ 0 + 4, 4 + 1, 8 + 0} = 7

R(0, 3) = 1

next with i = 1 ; so j = 4; as i < k ≤ j, so the possible values for k = 2,3 and 4.

W(1, 4) = P(4) + Q(4)+W(1, 3) = 3+ 0 + 3 = 6
C(1, 4) = W(1, 4)+ min {C (1, 1) + C(2, 4) ,C(1, 2) + C(3, 4),C(1, 3) + C(4, 4)}

= 6 +min{ 0 + 5, 2 + 3, 4 + 0} = 10
R(1, 4) = 4

next with i = 2 ; so j = 5; as i < k ≤ j, so the possible values for k = 3, 4 and 5.

W(2, 5) = P(5) + Q(5)+W(2, 4) = 5+ 0 + 4 = 9
C(2, 5) = W(2, 5)+ min {C (2, 2) + C(3, 5) ,C(2, 3) + C(4, 5),C(2, 4) + C(5, 5)}

= 9 +min{ 0 + 11, 1 + 5 ,5 + 0} = 14

R(2, 5) = 5

next with i = 3 ; so j = 6; as i < k ≤ j, so the possible values for k = 4, 5 and 6.

W(3, 6) = P(6) + Q(6)+W(3, 5) = 2+ 0 + 8 = 10
C(3, 6) = W(3, 6)+ min {C (3, 3) + C(4, 6) ,C(3 ,4) + C(5, 6),C(3, 5) + C(6, 6)}

= 10 +min{ 0 + 9 , 3 + 2 ,11 + 0} = 15

R(3, 6) = 5

next with i = 4 ; so j = 7; as i < k ≤ j, so the possible values for k = 5, 6 and 7.

W(4, 7) = P(7) + Q(7)+W(4, 6) = 1+ 0 + 7 = 8
C(4, 7) = W(4, 7)+ min {C (4, 4) + C(5, 7) ,C(4 ,5) + C(6, 7),C(4, 6) + C(7, 7)}

= 8 +min{ 0 + 4 , 5 + 1 ,9 + 0} = 12

R(4, 7) = 5

Fourth, computing all c(i, j) such that j – i = 4 ;j = i + 4 and as 0 ≤ i < 4 ; i = 0, 1,
2, 3 for i < k ≤ j. Start with i = 0 ; so j = 4; as i < k ≤ j, so the possible values for

k = 1,2 ,3 and 4.

W(0, 4) = P(4) + Q(4)+W(0, 3) = 3+ 0 + 7 = 10
C(0, 4) = W(0, 4)+ min {C (0, 0) + C(1,4) ,C(0, 1) + C(2, 4),C(0, 2) + C(3, 4),

C(0, 3) + C(4, 4)}
= 10 +min{ 0 + 10, 4 + 5,8 + 3,11 + 0} = 19

R(0, 4) = 2

next with i = 1 ; so j = 5; as i < k ≤ j, so the possible values for k = 2,3 ,4 and 5.

W(1, 5) = P(5) + Q(5)+W(1, 4) = 5+ 0 + 6 = 11
C(1, 5) = W(1, 5)+ min {C (1, 1) + C(2, 5) ,C(1, 2) + C(3, 5),C(1, 3) + C(4, 5)

C(1, 4) + C(5, 5)}

= 11 +min{ 0 + 14, 2 + 11,4 + 5,10 +0} = 20

R(1, 5) = 4

next with i = 2 ; so j = 6; as i < k ≤ j, so the possible values for k = 3,4,5 and 6.

W(2, 6) = P(6) + Q(6)+W(2, 5) = 2+ 0 + 9 = 11

C(2, 6) = W(2, 6)+ min {C (2, 2) + C(3, 6) ,C(2, 3) + C(4, 6),C(2, 4) + C(5, 6)
C(2, 5) + C (6, 6)} = 11 +min{ 0 + 15, 1 + 9 ,5 + 2,14 + 0} = 18

R(2, 6) = 5

next with i = 3 ; so j = 7; as i < k ≤ j, so the possible values for k = 4,5,6 and 7.

W(3, 7) = P(7) + Q(7)+W(3, 6) = 1+ 0 +11 = 12
C(3, 7) = W(3, 7)+ min {C (3, 3) + C(4, 7) ,C(3, 4) + C(5, 7),C(3, 5) + C(6, 7)

C(3, 6) + C (7, 7)} = 12 +min{ 0 + 12, 3 +4 ,11 +1,15 + 0} = 19

R(3, 7) = 5

Fifth, computing all c(i, j) such that j – i = 5; j = i + 5 and as 0 ≤ i < 3;
i = 0, 1, 2, i < k ≤ j. Start with i = 0 ; so j = 4; as i < k ≤ j, so the possible
values for k = 1,2 ,3,4 and 5.

W(0, 5) = P(5) + Q(5)+W(0, 4) = 5+ 0 + 10 = 15
C(0, 5) = W(0, 5)+ min {C (0, 0) + C(1,5) ,C(0, 1) + C(2, 5),C(0, 2) + C(3, 5),

C(0, 3) + C(4, 5),C(0, 4) + C(5, 5)}

= 10 +min{ 0 + 20, 4 + 14, 8 + 11 ,19 + 0} = 28

R(0, 5) = 2

next with i = 1 ; so j = 6; as i < k ≤ j, so the possible values for k = 2, 3 ,4, 5 & 6.

W(1, 6) = P(6) + Q(6)+W(1, 5) = 2+ 0 + 11 = 13

C(1, 6) = W(1, 6)+ min {C (1, 1) + C(2, 6) ,C(1, 2) + C(3, 6),C(1, 3) + C(4, 6)
C(1, 4) + C(5, 6),C(1, 5)+C(6, 6)}

= 13 +min{ 0 + 18, 2 + 15, 4 + 9, 10 +2, 20 + 0} = 25

R(1, 6) = 5

next with i = 2 ; so j = 7; as i < k ≤ j, so the possible values for k = 3,4,5,6 and 7.

W(2, 7) = P(7) + Q(7)+W(2, 6) = 1+ 0 + 11 = 12
C(2, 7) = W(2, 7)+ min {C (2, 2) + C(3, 7) ,C(2, 3) + C(4, 7),C(2, 4) + C(5, 7)

C(2, 5) + C (6, 7),C(2, 6) + C(7,7)}
= 12 +min{ 0 + 18, 1 + 12 , 5 + 4, 14 + 1, 18 + 0} = 21

R(2, 7) = 5

Sixth, computing all c(i, j) such that j – i = 6 ;j = i + 6 and as 0 ≤ i < 2 ; i = 0, 1
i < k ≤ j. Start with i = 0; so j = 6; as i < k ≤ j, so the possible values for k = 1,
2, 3, 4 5 & 6.
W(0, 6) = P(6) + Q(6)+W(0, 5) = 2+ 0 + 15 = 17
C(0, 6) = W(0,6)+ min {C (0, 0) + C(1,6) ,C(0, 1) + C(2, 6),C(0, 2) + C(3, 6),

C(0, 3) + C(4, 6),C(0, 4) + C(5, 6),C(0, 5) + C(6, 6)}
= 17 +min{ 0 + 25, 4 + 18, 8 + 15,19 + 2, 31 + 0} = 37

R(0, 6) = 4

next with i = 1 ; so j = 7; as i < k ≤ j, so the possible values for k = 2, 3, 4, 5, 6
and 7.

W(1, 7) = P(7) + Q(7)+W(1, 6) = 1+ 0 + 13 = 14
C(1, 7) = W(1, 7)+ min {C (1, 1) + C(2, 7) ,C(1, 2) + C(3, 7),C(1, 3) + C(4, 7)

C(1, 4) + C(5, 7),C(1, 5)+C(6, 7),C(1, 6) +C(7, 7)}
= 14 +min{ 0 + 21, 2 + 18, 4 + 12, 10 + 4, 20 + 1, 21 + 0} = 28

R(1, 7) = 5

Seventh, computing all c(i, j) such that j – i = 7 ;j = i + 7 and as 0 ≤ i < 1 ; i = 0
i < k ≤ j. Start with i = 0 ; so j = 7; as i < k ≤ j, so the possible values for k = 1, 2,
3, 4, 5, 6 and 7.

W(0, 7) = P(7) + Q(7)+W(0, 6) = 1+ 0 + 17 = 18
C(0, 7) = W(0, 7)+ min {C (0, 0) + C(1, 7) ,C(0, 1) + C(2, 7),C(0, 2) + C(3, 7),

C(0, 3) + C(4, 7),C(0, 4) + C(5, 6),C(0, 5) + C (6, 7),C(0, 6) + C(7, 7)}
= 18 +min{ 0 + 28, 4 + 21, 8 + 18,19 +4, 31 + 1, 37 + 0} = 41

R(0, 7) = 4

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 4

Unit - IV

Year and Semester: IIyr &II Sem
A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

0/1 – KNAPSACK-CO4

We are given n objects and a knapsack. Each object i has a positive weight wi and a
positive value Vi. The knapsack can carry a weight not exceeding W. Fill the knapsack
so that the value of objects in the knapsack is optimized.

A solution to the knapsack problem can be obtained by making a sequence of

decisions on the variables x1, x2, , xn. A decision on variable xi involves
determining which of the values 0 or 1 is to be assigned to it. Let us assume that

1 i i

1

decisions on the xi are made in the order xn, xn-1,x1. Following a decision on xn,
we may be in one of two possible states: the capacity remaining in m – wn and a
profit of pn has accrued. It is clear that the remaining decisions xn-1, . . . , x1 must be
optimal with respect to the problem state resulting from the decision on xn.
Otherwise, xn,. . . . , x1 will not be optimal. Hence, the principal of optimality holds.

Fn (m) = max {fn-1 (m), fn-1 (m - wn) + pn} -- 1

For arbitrary fi (y), i > 0, this equation generalizes to:

Fi (y) = max {fi-1 (y), fi-1 (y - wi) + pi} -- 2

Equation-2 can be solved for fn (m) by beginning with the knowledge fo (y) = 0 for all
y and fi (y) = - , y < 0. Then f1, f2, . . . fn can be successively computed using
equation–2.

When the wi’s are integer, we need to compute fi (y) for integer y, 0 < y < m. Since fi

(y) = - for y < 0, these function values need not be computed explicitly. Since
each fi can be computed from fi - 1 in Θ (m) time, it takes Θ (m n) time to compute
fn. When the wi’s are real numbers, fi (y) is needed for real numbers y such that 0 <
y < m. So, fi cannot be explicitly computed for all y in this range. Even when the wi’s
are integer, the explicit Θ (m n) computation of fn may not be the most efficient
computation. So, we explore an alternative method for both cases.

The fi (y) is an ascending step function; i.e., there are a finite number of y’s, 0 = y1

< y2 < < yk, such that fi (y1) < fi (y2) < < fi (yk); fi (y) = - , y < y1; fi
(y) = f (yk), y > yk; and fi (y) = fi (yj), yj < y < yj+1. So, we need to compute only fi
(yj), 1 < j < k. We use the ordered set Si = {(f (yj), yj) | 1 < j < k} to represent fi
(y). Each number of Si is a pair (P, W), where P = fi (yj) and W = yj. Notice that S0 =
{(0, 0)}. We can compute Si+1 from Si by first computing:

Si = {(P, W) | (P – p , W – w) Si}

Now, Si+1 can be computed by merging the pairs in Si and Si together. Note that if

Si+1 contains two pairs (Pj, Wj) and (Pk, Wk) with the property that Pj < Pk and Wj >
Wk, then the pair (Pj, Wj) can be discarded because of equation-2. Discarding or
purging rules such as this one are also known as dominance rules. Dominated tuples
get purged. In the above, (Pk, Wk) dominates (Pj, Wj).

Example 1:

Consider the knapsack instance n = 3, (w1, w2, w3) = (2, 3, 4), (P1, P2, P3) = (1, 2,
5) and M = 6.

Solution:

Initially, fo (x) = 0, for all x and fi (x) = - if x < 0.

Fn (M) = max {fn-1 (M), fn-1 (M - wn) + pn}

F3 (6) = max (f2 (6), f2 (6 – 4) + 5} = max {f2 (6), f2 (2) + 5}

F2 (6) = max (f1 (6), f1 (6 – 3) + 2} = max {f1 (6), f1 (3) + 2}

1

1

1

1

F1 (6) = max (f0 (6), f0 (6 – 2) + 1} = max {0, 0 + 1} = 1

F1 (3) = max (f0 (3), f0 (3 – 2) + 1} = max {0, 0 + 1} = 1

Therefore, F2 (6) = max (1, 1 + 2} = 3

F2 (2) = max (f1 (2), f1 (2 – 3) + 2} = max {f1 (2), - + 2}

F1 (2) = max (f0 (2), f0 (2 – 2) + 1} = max {0, 0 + 1} = 1

F2 (2) = max {1, - + 2} = 1

Finally, f3 (6) = max {3, 1 + 5} = 6

Other Solution:

For the given data we have:

S0 = {(0, 0)}; S0 = {(1, 2)}

S1 = (S0 U S0) = {(0, 0), (1, 2)}

X - 2 = 0 => x = 2. y – 3 = 0 => y = 3
X - 2 = 1 => x = 3. y – 3 = 2 => y = 5

S11 = {(2, 3), (3, 5)}

S2 = (S1 U S1 1) = {(0, 0), (1, 2), (2, 3), (3, 5)}

X – 5 = 0 => x = 5. y – 4 = 0 => y = 4
X – 5 = 1 => x = 6. y – 4 = 2 => y = 6

X – 5 = 2 => x = 7. y – 4 = 3 => y = 7

X – 5 = 3 => x = 8. y – 4 = 5 => y = 9

S21 = {(5, 4), (6, 6), (7, 7), (8, 9)}

S3 = (S2 U S2) = {(0, 0), (1, 2), (2, 3), (3, 5), (5, 4), (6, 6), (7, 7), (8, 9)}

By applying Dominance rule,

S3 = (S2 U S2) = {(0, 0), (1, 2), (2, 3), (5, 4), (6, 6)}

From (6, 6) we can infer that the maximum Profit pi xi = 6 and weight xi wi = 6

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 5

Unit - IV

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Reliability Design- CO4

The problem is to design a system that is composed of several devices connected in
series. Let ri be the reliability of device Di (that is ri is the probability that device i
will function properly) then the reliability of the entire system is ri. Even if the
individual devices are very reliable (the ri’s are very close to one), the reliability of
the system may not be very good. For example, if n = 10 and ri = 0.99, i < i < 10,
then ri = .904. Hence, it is desirable to duplicate devices. Multiply copies of the
same device type are connected in parallel.

j

If stage i contains mi copies of device Di. Then the probability that all mi have a
malfunction is (1 - r)

mi
. Hence the reliability of stage i becomes 1 – (1 - r)

mi
.

i i

The reliability of stage ‘i’ is given by a function i (mi).

Our problem is to use device duplication. This maximization is to be carried out under
a cost constraint. Let ci be the cost of each unit of device i and let c be the maximum
allowable cost of the system being designed.

We wish to solve:

Maximize i mi
1 i n

Subject to Ci mi C
1 i n

mi > 1 and interger, 1 < i < n

Example 1:

Design a three stage system with device types D1, D2 and D3. The costs are $30, $15
and $20 respectively. The Cost of the system is to be no more than $105. The
reliability of each device is 0.9, 0.8 and 0.5 respectively.

Solution:

We assume that if if stage I has mi devices of type i in parallel, then i (mi) =1 – (1-

ri)
mi

Since, we can assume each ci > 0, each mi must be in the range 1 ≤ mi ≤ ui. Where:

 n
ui C Ci C

J Ci

 1

Using the above equation compute u1, u2 and u3.

105 30 3015 20
u1 70

30 30

10515 3015 20 55

u2 15
 3

15

u3
105 20 3015 20 60

 3
20 20

We useS i i:stage number and J: no. of devices in stage i mi

So fo (x), x initially fo x 1 and x 0, so, So 1, 0

Compute S1, S2 and S3 as follows:

S1 = depends on u1 value, as u1 = 2, so

S1 S1, S1
1 2

 2

S2 = depends on u2 value, as u2 = 3, so

1

2

mi 1

1

2

3

S2 S 2 , S 2 , S2
1 2 3

S3 = depends on u3 value, as u3 = 3, so

S3 S 3, S 3 , S3
1 2 3

Now find,S
1 1f (x), x

f1 x 1 (1) fo , 1 (2) f 0 ()} With devices m1 = 1 and m2 = 2

Compute 1 (1) and 1 (2) using the formula: i mi) 1 (1 ri)
mi

1 1 1 1 r1m 1
= 1 – (1 – 0.9)1 = 0.9

1 2 1 1 0.92 0.99

S1 f1 x, x 0.9, 30
1

S1 0.99 , 30 30 0.99, 60

Therefore, S1 = {(0.9, 30), (0.99, 60)}

Next findS 2 f (x), x
1 2

f2 (x) {2 1 * f1 , 2 2 * f1 , 2 3 * f1 }

2 1 1 1 rI = 1 – (1 – 0.8) = 1 – 0.2 = 0.8

2 2 1 1 0.8 2 0.96

2 3 1 1 0.8 3 0.992

S2 {(0.8(0.9),30 15), (0.8(0.99),60 15)} = {(0.72, 45), (0.792, 75)}

S2 {(0.96(0.9),30 15 15) , (0.96(0.99),60 15 15)}

= {(0.864, 60), (0.9504, 90)}

S2 {(0.992(0.9),30 15 1515) , (0.992(0.99),60 15 1515)}

= {(0.8928, 75), (0.98208, 105)}

S 2 S2 , S 2 , S 2
1 2 3

By applying Dominance rule to S2:

Therefore, S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)}

Dominance Rule:

If Si contains two pairs (f1, x1) and (f2, x2) with the property that f1 ≥ f2 and x1 ≤ x2,
then (f1, x1) dominates (f2, x2), hence by dominance rule (f2, x2) can be discarded.
Discarding or pruning rules such as the one above is known as dominance rule.
Dominating tuples will be present in Si and Dominated tuples has to be discarded
from Si.

Case 1: if f1 ≤ f2 and x1 > x2 then discard (f1, x1)

Case 2: if f1 > f2 and x1 < x2 the discard (f2, x2)

Case 3: otherwise simply write (f1, x1)

S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)}

 3 1 1 1 rI mi

= 1 – (1 – 0.5)1 = 1 – 0.5 = 0.5

 3 2 1 1 0.5 2

 3 3 1 1 0.5 3

 0.75

 0.875

1

1

2

3

3

S3 0.5 (0.72), 45 20, 0.5 (0.864), 60 20, 0.5 (0.8928), 75 20

S3 0.36, 65, 0.437, 80, 0.4464, 95

S3 {0.75 (0.72), 45 20 20, 0.75 (0.864), 60 20 20,
0.75 (0.8928), 75 20 20}

= {(0.54, 85), (0.648, 100), (0.6696, 115)}

S3 0.875 (0.72), 45 20 20 20, 0.875 (0.864), 60 20 20 20,
0.875 (0.8928), 75 20 20 20

S3 (0.63, 105), 1.756, 120, 0.7812, 135

If cost exceeds 105, remove that tuples

S3 = {(0.36, 65), (0.437, 80), (0.54, 85), (0.648, 100)}

The best design has a reliability of 0.648 and a cost of 100. Tracing back for the solution

through Si ‘s we can determine that m3 = 2, m2 = 2 and m1 = 1.

CVR COLLEGE OF ENGINEERING

An UGC Autonomous Institution - Affiliated to JNTUH
Handout – 6

Unit - IV

Year and Semester: IIyr &II Sem
A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

BACKTRACKING -CO4

General Method:

Backtracking is used to solve problem in which a sequence of objects is chosen from a
specified set so that the sequence satisfies some criterion. The desired solution is
expressed as an n-tuple (x1, , xn) where each xi Є S, S being a finite set.

The solution is based on finding one or more vectors that maximize, minimize, or
satisfy a criterion function P (x1, , xn). Form a solution and check at every step
if this has any chance of success. If the solution at any point seems not promising,
ignore it. All solutions requires a set of constraints divided into two categories: explicit
and implicit constraints.

Definition 1: Explicit constraints are rules that restrict each xi to take on values only

from a given set. Explicit constraints depend on the particular instance I
of problem being solved. All tuples that satisfy the explicit constraints
define a possible solution space for I.

Definition 2: Implicit constraints are rules that determine which of the tuples in the

solution space of I satisfy the criterion function. Thus, implicit
constraints describe the way in which the xi’s must relate to each other.

 For 8-queens problem:

Explicit constraints using 8-tuple formation, for this problem are S= {1, 2, 3,
4, 5, 6, 7, 8}.

The implicit constraints for this problem are that no two queens can be the
same (i.e., all queens must be on different columns) and no two queens can

be on the same diagonal.

Backtracking is a modified depth first search of a tree. Backtracking algorithms
determine problem solutions by systematically searching the solution space for the

given problem instance. This search is facilitated by using a tree organization for the
solution space.

Backtracking is the procedure where by, after determining that a node can lead to

nothing but dead end, we go back (backtrack) to the nodes parent and proceed with
the search on the next child.

A backtracking algorithm need not actually create a tree. Rather, it only needs to

keep track of the values in the current branch being investigated. This is the way we
implement backtracking algorithm. We say that the state space tree exists implicitly

in the algorithm because it is not actually constructed.

Terminology:

Problem state is each node in the depth first search tree.

Solution states are the problem states ‘S’ for which the path from the root node to
‘S’ defines a tuple in the solution space.

Answer states are those solution states for which the path from root node to s
defines a tuple that is a member of the set of solutions.

State space is the set of paths from root node to other nodes. State space tree is the
tree organization of the solution space. The state space trees are called static trees.
This terminology follows from the observation that the tree organizations are

independent of the problem instance being solved. For some problems it is
advantageous to use different tree organizations for different problem instance. In
this case the tree organization is determined dynamically as the solution space is
being searched. Tree organizations that are problem instance dependent are called

dynamic trees.

Live node is a node that has been generated but whose children have not yet been
generated.

E-node is a live node whose children are currently being explored. In other words, an

E-node is a node currently being expanded.

Dead node is a generated node that is not to be expanded or explored any further.
All children of a dead node have already been expanded.

Branch and Bound refers to all state space search methods in which all children of
an E-node are generated before any other live node can become the E-node.

Depth first node generation with bounding functions is called backtracking. State

generation methods in which the E-node remains the E-node until it is dead, lead to
branch and bound methods.

Planar Graphs:

When drawing a graph on a piece of a paper, we often find it convenient to permit
edges to intersect at points other than at vertices of the graph. These points of
interactions are called crossovers.

A graph G is said to be planar if it can be drawn on a plane without any crossovers;
otherwise G is said to be non-planar i.e., A graph is said to be planar iff it can be

drawn in a plane in such a way that no two edges cross each other.

N-Queens Problem:

Let us consider, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8

chessboard so that no two “attack”, that is, no two of them are on the same row,

column, or diagonal.

All solutions to the 8-queens problem can be represented as 8-tuples (x1, , x8),
where xi is the column of the ith row where the ith queen is placed.

The explicit constraints using this formulation are Si = {1, 2, 3, 4, 5, 6, 7, 8}, 1 < i <
8. Therefore the solution space consists of 88 8-tuples.

The implicit constraints for this problem are that no two xi’s can be the same (i.e., all
queens must be on different columns) and no two queens can be on the same
diagonal.

This realization reduces the size of the solution space from 88 tuples to 8! Tuples.

The promising function must check whether two queens are in the same column or

diagonal:

Suppose two queens are placed at positions (i, j) and (k, l) Then:

 Column Conflicts: Two queens conflict if their xi values are identical.

 Diag 45 conflict: Two queens i and j are on the same 450 diagonal if:

i – j = k – l.

This implies, j – l = i – k

 Diag 135 conflict:

i + j = k + l.

This implies, j – l = k – i

Therefore, two queens lie on the same diagonal if and only if:

j - l = i – k

Where, j be the column of object in row i for the ith queen and l be the column of
object in row ‘k’ for the kth queen.

To check the diagonal clashes, let us take the following tile configuration:

In this example, we have:

i 1 2 3 4 5 6 7 8

xi 2 5 1 8 4 7 3 6

Let us consider for the

case whether the queens on 3rd row and 8th row
are conflicting or not. In this

case (i, j) = (3, 1) and (k, l) = (8, 6). Therefore:

j - l = i – k 1 - 6 = 3 – 8
 5 = 5

In the above example we have, j - l = i – k , so the two queens are attacking.

This is not a solution.

Example:

Suppose we start with the feasible sequence 7, 5, 3, 1.

Step 1:

Add to the sequence the next number in the sequence 1, 2, . . . , 8 not yet

used.

Step 2:

If this new sequence is feasible and has length 8 then STOP with a solution. If
the new sequence is feasible and has length less then 8, repeat Step 1.

Step 3:

If the sequence is not feasible, then backtrack through the sequence until we

find the most recent place at which we can exchange a value. Go back to Step
1.

On a chessboard, the solution will look like:

4 – Queens Problem:

Let us see how backtracking works on the 4-queens problem. We start with the root

node as the only live node. This becomes the E-node. We generate one child. Let us
assume that the children are generated in ascending order. Let us assume that the
children are generated in ascending order. Thus node number 2 of figure is generated
and the path is now (1). This corresponds to placing queen 1 on column 1. Node 2

becomes the E-node. Node 3 is generated and immediately killed. The next node
generated is node 8 and the path becomes (1, 3). Node 8 becomes the E-node.
However, it gets killed as all its children represent board configurations that cannot

lead to an answer node. We backtrack to node 2 and generate another child, node 13.
The path is now (1, 4). The board configurations as backtracking proceeds is as
follows:

(a) (b) (c) (d)

(e) (f) (g) (h)

The above figure shows graphically the steps that the backtracking algorithm goes

through as it tries to find a solution. The dots indicate placements of a queen, which
were tried and rejected because another queen was attacking.

In Figure (b) the second queen is placed on columns 1 and 2 and finally settles on

column 3. In figure (c) the algorithm tries all four columns and is unable to place the
next queen on a square. Backtracking now takes place. In figure (d) the second
queen is moved to the next possible column, column 4 and the third queen is placed

on column 2. The boards in Figure (e), (f), (g), and (h) show the remaining steps that
the algorithm goes through until a solution is found.

1

1

. . 2

1

 2

. . . .

1

 2

. 3

1

 2

 3

. . . .

 1

 1

. . . 2

 1

 2

3

. . 4

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 7

Unit - IV

Year and Semester: IIyr &II Sem
A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Sum of Subsets-CO4

Given positive numbers wi, 1 ≤ i ≤ n, and m, this problem requires finding all subsets
of wi whose sums are ‘m’.

All solutions are k-tuples, 1 ≤ k ≤ n.

Explicit constraints:

 xi Є {j | j is an integer and 1 ≤ j ≤ n}.

Implicit constraints:

 No two xi can be the same.

 The sum of the corresponding wi’s be m.

 xi < xi+1 , 1 ≤ i < k (total order in indices) to avoid generating multiple
instances of the same subset (for example, (1, 2, 4) and (1, 4, 2)
represent the same subset).

A better formulation of the problem is where the solution subset is represented by an
n-tuple (x1, , xn) such that xi Є {0, 1}.

The above solutions are then represented by (1, 1, 0, 1) and (0, 0, 1, 1).

For both the above formulations, the solution space is 2n distinct tuples.

For example, n = 4, w = (11, 13, 24, 7) and m = 31, the desired subsets are (11,
13, 7) and (24, 7).

The tree corresponds to the variable tuple size formulation. The edges are labeled
such that an edge from a level i node to a level i+1 node represents a value for xi. At
each node, the solution space is partitioned into sub - solution spaces. All paths from
the root node to any node in the tree define the solution space, since any such path
corresponds to a subset satisfying the explicit constraints.

The possible paths are (1), (1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 4), (1, 3, 4), (2), (2,
3), and so on. Thus, the left mot sub-tree defines all subsets containing w1, the next
sub-tree defines all subsets containing w2 but not w1, and so on.

Graph Coloring (for planar graphs):

Let G be a graph and m be a given positive integer. We want to discover whether the

nodes of G can be colored in such a way that no two adjacent nodes have the same
color, yet only m colors are used. This is termed the m-colorabiltiy decision problem.

The m-colorability optimization problem asks for the smallest integer m for which the
graph G can be colored.

Given any map, if the regions are to be colored in such a way that no two adjacent

regions have the same color, only four colors are needed.

For many years it was known that five colors were sufficient to color any map, but no

map that required more than four colors had ever been found. After several hundred
years, this problem was solved by a group of mathematicians with the help of a
computer. They showed that in fact four colors are sufficient for planar graphs.

The function m-coloring will begin by first assigning the graph to its adjacency matrix,
setting the array x [] to zero. The colors are represented by the integers 1, 2, . . . , m
and the solutions are given by the n-tuple (x1, x2, . . ., xn), where xi is the color of
node i.

A recursive backtracking algorithm for graph coloring is carried out by invoking the
statement mcoloring(1);

Algorithm mcoloring (k)

// This algorithm was formed using the recursive backtracking schema. The graph is
// represented by its Boolean adjacency matrix G [1: n, 1: n]. All assignments of
// 1, 2, , m to the vertices of the graph such that adjacent vertices are assigned
// distinct integers are printed. k is the index of the next vertex to color.

{
repeat
{ // Generate all legal assignments for x[k].

NextValue (k); // Assign to x [k] a legal color.
If (x [k] = 0) then return; // No new color possible
If (k = n) then // at most m colors have been

// used to color the n vertices.
write (x [1: n]);
else mcoloring (k+1);

} until (false);

}

Algorithm NextValue (k)
// x [1] , x [k-1] have been assigned integer values in the range [1, m] such that
// adjacent vertices have distinct integers. A value for x [k] is determined in the range
// [0, m].x[k] is assigned the next highest numbered color while maintaining distinctness

// from the adjacent vertices of vertex k. If no such color exists, then x [k] is 0.
{

repeat

{

x [k]: = (x [k] +1) mod (m+1) // Next highest color.

If (x [k] = 0) then return; // All colors have been used

for j := 1 to n do

{ // check if this color is distinct from adjacent colors
if ((G [k, j] 0) and (x [k] = x [j]))

// If (k, j) is and edge and if adj. vertices have the same color.
then break;

}

if (j = n+1) then return; // New color found

} until (false); // Otherwise try to find another color.

}

Hamiltonian Cycles:

Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle (suggested
by William Hamilton) is a round-trip path along n edges of G that visits every vertex
once and returns to its starting position. In other vertices of G are visited in the order
v1, v2, , vn+1, then the edges (vi, vi+1) are in E, 1 < i < n, and the vi are
distinct expect for v1 and vn+1, which are equal. The graph G1 contains the
Hamiltonian cycle 1, 2, 8, 7, 6, 5, 4, 3, 1. The graph G2 contains no Hamiltonian
cycle.

Two graphs to illustrate Hamiltonian cycle

The backtracking solution vector (x1, xn) is defined so that xi represents the ith
visited vertex of the proposed cycle. If k = 1, then x1 can be any of the n vertices. To
avoid printing the same cycle n times, we require that x1 = 1. If 1 < k < n, then xk
can be any vertex v that is distinct from x1, x2, . . . , xk–1 and v is connected by an
edge to kx-1. The vertex xn can only be one remaining vertex and it must be connected
to both xn-1 and x1.

Using NextValue algorithm we can particularize the recursive backtracking schema to

find all Hamiltonian cycles. This algorithm is started by first initializing the adjacency

matrix G[1: n, 1: n], then setting x[2: n] to zero and x[1] to 1, and then executing
Hamiltonian(2).

The traveling salesperson problem using dynamic programming asked for a tour that

has minimum cost. This tour is a Hamiltonian cycles. For the simple case of a graph
all of whose edge costs are identical, Hamiltonian will find a minimum-cost tour if a
tour exists.

Algorithm NextValue (k)
// x [1: k-1] is a path of k – 1 distinct vertices . If x[k] = 0, then no vertex has as yet been
// assigned to x [k]. After execution, x[k] is assigned to the next highest numbered vertex
// which does not already appear in x [1 : k – 1] and is connected by an edge to x [k – 1].
// Otherwise x [k] = 0. If k = n, then in addition x [k] is connected to x [1].

{

repeat

{

x [k] := (x [k] +1) mod (n+1); // Next vertex.
If (x [k] = 0) then return;
If (G [x [k – 1], x [k]] 0) then
{ // Is there an edge?

for j := 1 to k – 1 do if (x [j] = x [k]) then break;
// check for distinctness.

If (j = k) then // If true, then the vertex is distinct.
If ((k < n) or ((k = n) and G [x [n], x [1]] 0))
then return;

}
} until (false);

}

Graph G2 Graph G1

Algorithm Hamiltonian (k)
// This algorithm uses the recursive formulation of backtracking to find all the Hamiltonian

// cycles of a graph. The graph is stored as an adjacency matrix G [1: n, 1: n]. All cycles begin
// at node 1.
{

repeat
{ // Generate values for x [k].

NextValue (k); //Assign a legal Next value to x [k].

if (x [k] = 0) then return;

if (k = n) then write (x [1: n]);
else Hamiltonian (k + 1)

} until (false);

}

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 1

Unit - V

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

Branch and Bound General method: CO5

Branch and Bound is another method to systematically search a solution space. Just

like backtracking, we will use bounding functions to avoid generating subtrees that

do not contain an answer node. However branch and Bound differs from backtracking

in two important manners:

1. It has a branching function, which can be a depth first search, breadth first

search or based on bounding function.

2. It has a bounding function, which goes far beyond the feasibility test as a

mean to prune efficiently the search tree.

Branch and Bound refers to all state space search methods in which all children of
the E-node are generated before any other live node becomes the E-node

Branch and Bound is the generalization of both graph search strategies, BFS and D-
search.

 A BFS like state space search is called as FIFO (First in first out) search

as the list of live nodes in a first in first out list (or queue).

 A D search like state space search is called as LIFO (Last in first out)

search as the list of live nodes in a last in first out (or stack).

Definition 1: Live node is a node that has been generated but whose children have

not yet been generated.

Definition 2: E-node is a live node whose children are currently being explored. In

other words, an E-node is a node currently being expanded.

Definition 3: Dead node is a generated node that is not to be expanded or explored
any further. All children of a dead node have already been expanded.

Definition 4: Branch-an-bound refers to all state space search methods in which all

children of an E-node are generated before any other live node can

become the E-node.

Definition 5: The adjective "heuristic", means" related to improving problem solving

performance". As a noun it is also used in regard to "any method or trick

used to improve the efficiency of a problem solving problem". But

imperfect methods are not necessarily heuristic or vice versa. "A heuristic

(heuristic rule, heuristic method) is a rule of thumb, strategy, trick

simplification or any other kind of device which drastically limits search

for solutions in large problem spaces. Heuristics do not guarantee optimal

solutions, they do not guarantee any solution at all. A useful heuristic

offers solutions which are good enough most of the time.

173

Least Cost (LC) search:

In both LIFO and FIFO Branch and Bound the selection rule for the next E-node in

rigid and blind. The selection rule for the next E-node does not give any preference

to a node that has a very good chance of getting the search to an answer node

quickly.

The search for an answer node can be speeded by using an “intelligent” ranking

function c() for live nodes. The next E-node is selected on the basis of this ranking

function. The node x is assigned a rank using:

c(x) = f(h(x)) + g(x)

where, c(x) is the cost of x.

h(x) is the cost of reaching x from the root and f(.) is any non-decreasing
function.

g (x) is an estimate of the additional effort needed to reach an answer node

from x.

A search strategy that uses a cost function c(x) = f(h(x) + g(x) to select the next

E-node would always choose for its next E-node a live node with least

LC–search (Least Cost search)

c(.) is called a

BFS and D-search are special cases of LC-search. If g(x) = 0 and f(h(x)) = level of
node x, then an LC search generates nodes by levels. This is eventually the same as

a BFS. If f(h(x)) = 0 and

essentially a D-search.

g(x) > g(y) whenever y is a child of x, then the search is

An LC-search coupled with bounding functions is called an LC-branch and bound

search

We associate a cost c(x) with each node x in the state space tree. It is not possible to

easily compute the function c(x). So we compute a estimate c(x) of c(x).

Control Abstraction for LC-Search:

Let t be a state space tree and c() a cost function for the nodes in t. If x is a node in

t, then c(x) is the minimum cost of any answer node in the subtree with root x. Thus,

c(t) is the cost of a minimum-cost answer node in t.

A heuristic c(.) is used to estimate c(). This heuristic should be easy to compute and
generally has the property that if x is either an answer node or a leaf node, then

c(x) = c(x) .

LC-search uses c to find an answer node. The algorithm uses two functions Least() and

Add() to delete and add a live node from or to the list of live nodes, respectively.

Least() finds a live node with least c(). This node is deleted from the list of live nodes
and returned.

174

Add(x) adds the new live node x to the list of live nodes. The list of live nodes be
implemented as a min-heap.

Algorithm LCSearch outputs the path from the answer node it finds to the root node

t. This is easy to do if with each node x that becomes live, we associate a field parent

which gives the parent of node x. When the answer node g is found, the path from g

to t can be determined by following a sequence of parent values starting from the

current E-node (which is the parent of g) and ending at node t.

Listnode = record
{

Listnode * next, *parent; float cost;

}

Algorithm LCSearch(t)

{ //Search t for an answer node

if *t is an answer node then output *t and return;

E := t; //E-node.

initialize the list of live nodes to be empty;

repeat
{

for each child x of E do

{

if x is an answer node then output the path from x to t and return;

Add (x); //x is a new live node.
(x parent) := E; // pointer for path to root

}

if there are no more live nodes then
{

write (“No answer node”);
return;

}

E := Least();
} until (false);

}

The root node is the first, E-node. During the execution of LC search, this list

contains all live nodes except the E-node. Initially this list should be empty.

Examine all the children of the E-node, if one of the children is an answer node, then

the algorithm outputs the path from x to t and terminates. If the child of E is not an

answer node, then it becomes a live node. It is added to the list of live nodes and its

parent field set to E. When all the children of E have been generated, E becomes a

dead node. This happens only if none of E’s children is an answer node. Continue the

search further until no live nodes found. Otherwise, Least(), by definition, correctly

chooses the next E-node and the search continues from here.

LC search terminates only when either an answer node is found or the entire state

space tree has been generated and searched.

Bounding:

A branch and bound method searches a state space tree using any search

mechanism in which all the children of the E-node are generated before another node

becomes the E-node. We assume that each answer node x has a cost c(x) associated

with it and that a minimum-cost answer node is to be found. Three common search

strategies are FIFO, LIFO, and LC. The three search methods differ only in the

selection rule used to obtain the next E-node.

175

A good bounding helps to prune efficiently the tree, leading to a faster exploration of
the solution space.

A cost function c(.) such that c(x) < c(x) is used to provide lower bounds on

solutions obtainable from any node x. If upper is an upper bound on the cost of a

minimum-cost solution, then all live nodes x with c(x) > c(x) > upper. The starting

value for upper can be obtained by some heuristic or can be set to .

As long as the initial value for upper is not less than the cost of a minimum-cost

answer node, the above rules to kill live nodes will not result in the killing of a live

node that can reach a minimum-cost answer node. Each time a new answer node is

found, the value of upper can be updated.

Branch-and-bound algorithms are used for optimization problems where, we deal

directly only with minimization problems. A maximization problem is easily converted

to a minimization problem by changing the sign of the objective function.

To formulate the search for an optimal solution for a least-cost answer node in a
state space tree, it is necessary to define the cost function c(.), such that c(x) is
minimum for all nodes representing an optimal solution. The easiest way to do this is
to use the objective function itself for c(.).

 For nodes representing feasible solutions, c(x) is the value of the objective

function for that feasible solution.

 For nodes representing infeasible solutions, c(x) = .

 For nodes representing partial solutions, c(x) is the cost of the minimum-cost

node in the subtree with root x.

Since, c(x) is generally hard to compute, the branch-and-bound algorithm will use an

estimate c(x) such that c(x) < c(x) for all x.

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 2

Unit - V

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

FIFO Branch and Bound:CO5

A FIFO branch-and-bound algorithm for the job sequencing problem can begin with

upper = as an upper bound on the cost of a minimum-cost answer node.

Starting with node 1 as the E-node and using the variable tuple size formulation of

Figure 8.4, nodes 2, 3, 4, and 5 are generated. Then u(2) = 19, u(3) = 14, u(4) =
18, and u(5) = 21.

The variable upper is updated to 14 when node 3 is generated. Since c (4) and c(5)

are greater than upper, nodes 4 and 5 get killed. Only nodes 2 and 3 remain alive.

Node 2 becomes the next E-node. Its children, nodes 6, 7 and 8 are generated.

Then u(6) = 9 and so upper is updated to 9. The cost

gets killed. Node 8 is infeasible and so it is killed.

c(7) = 10 > upper and node 7

Next, node 3 becomes the E-node. Nodes 9 and 10 are now generated. Then u(9) =

8 and so upper becomes 8. The cost c(10) = 11 > upper, and this node is killed.

The next E-node is node 6. Both its children are infeasible. Node 9’s only child is also
infeasible. The minimum-cost answer node is node 9. It has a cost of 8.

When implementing a FIFO branch-and-bound algorithm, it is not economical to kill

live nodes with c(x) > upper each time upper is updated. This is so because live
nodes are in the queue in the order in which they were generated. Hence, nodes with

c(x) > upper are distributed in some random way in the queue. Instead, live nodes

with c(x) > upper can be killed when they are about to become E-nodes.

The FIFO-based branch-and-bound algorithm with an appropriate

called FIFOBB.

c(.) and u(.) is

LC Branch and Bound:

An LC Branch-and-Bound search of the tree of Figure 8.4 will begin with upper =
and node 1 as the first E-node.

When node 1 is expanded, nodes 2, 3, 4 and 5 are generated in that order.

As in the case of FIFOBB, upper is updated to 14 when node 3 is generated and

nodes 4 and 5 are killed as c(4) > upper and c(5) > upper.

Node 2 is the next E-node as c(2) = 0 and c(3) = 5. Nodes 6, 7 and 8 are generated

and upper is updated to 9 when node 6 is generated. So, node 7 is killed as c(7) = 10

> upper. Node 8 is infeasible and so killed. The only live nodes now are nodes 3 and
6.

Node 6 is the next E-node as c(6) = 0 < c(3) . Both its children are infeasible.

Node 3 becomes the next E-node. When node 9 is generated, upper is updated to 8

as u(9) = 8. So, node 10 with c(10) = 11 is killed on generation.

Node 9 becomes the next E-node. Its only child is infeasible. No live nodes remain.

The search terminates with node 9 representing the minimum-cost answer node.

2 3

The path = 1 3 9 = 5 + 3 = 8

Traveling Sale Person Problem:

By using dynamic programming algorithm we can solve the problem with time

complexity of O(n22n) for worst case. This can be solved by branch and bound

technique using efficient bounding function. The time complexity of traveling sale

person problem using LC branch and bound is O(n22n) which shows that there is no

change or reduction of complexity than previous method.

We start at a particular node and visit all nodes exactly once and come back to initial
node with minimum cost.

Let G = (V, E) is a connected graph. Let C(i, J) be the cost of edge <i, j>. cij = if

<i, j> E and let |V| = n, the number of vertices. Every tour starts at vertex 1 and

ends at the same vertex. So, the solution space is given by S = {1, , 1 | is a

permutation of (2, 3, . . . , n)} and |S| = (n – 1)!. The size of S can be reduced by
restricting S so that (1, i1, i2, in-1, 1) S iff <ij, ij+1> E, 0 < j < n - 1 and i0
= in =1.

Procedure for solving traveling sale person problem:

1. Reduce the given cost matrix. A matrix is reduced if every row and column is

reduced. A row (column) is said to be reduced if it contain at least one zero and

all-remaining entries are non-negative. This can be done as follows:

a) Row reduction: Take the minimum element from first row, subtract it

from all elements of first row, next take minimum element from the

second row and subtract it from second row. Similarly apply the same

procedure for all rows.
b) Find the sum of elements, which were subtracted from rows.

c) Apply column reductions for the matrix obtained after row reduction.

Column reduction: Take the minimum element from first column,

subtract it from all elements of first column, next take minimum

element from the second column and subtract it from second column.

Similarly apply the same procedure for all columns.

d) Find the sum of elements, which were subtracted from columns.

e) Obtain the cumulative sum of row wise reduction and column wise

reduction.

Cumulative reduced sum = Row wise reduction sum + column wise
reduction sum.

Associate the cumulative reduced sum to the starting state as lower

bound and as upper bound.

2. Calculate the reduced cost matrix for every node R. Let A is the reduced cost

matrix for node R. Let S be a child of R such that the tree edge (R, S)

corresponds to including edge <i, j> in the tour. If S is not a leaf node, then

the reduced cost matrix for S may be obtained as follows:

a) Change all entries in row i and column j of A to .

b) Set A (j, 1) to .

c) Reduce all rows and columns in the resulting matrix except for rows and
column containing only . Let r is the total amount subtracted to reduce

the matrix.

c) Find cS cR A i, j r, where ‘r’ is the total amount subtracted

to reduce the matrix, cR indicates the lower bound of the ith node in (i,

j) path and c S is called the cost function.

3. Repeat step 2 until all nodes are visited.

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 3

Unit - V

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

0/1 Knapsack Problem: CO5

Consider the instance: M = 15, n = 4, (P1, P2, P3, P4) = (10, 10, 12, 18) and
(w1, w2, w3, w4) = (2, 4, 6, 9).

0/1 knapsack problem can be solved by using branch and bound technique. In this
problem we will calculate lower bound and upper bound for each node.

Place first item in knapsack. Remaining weight of knapsack is 15 – 2 = 13. Place next
item w2 in knapsack and the remaining weight of knapsack is 13 – 4 = 9. Place next
item w3 in knapsack then the remaining weight of knapsack is 9 – 6 = 3. No fractions
are allowed in calculation of upper bound so w4 cannot be placed in knapsack.

Profit = P1 + P2 + P3 = 10 + 10 + 12

So, Upper bound = 32

To calculate lower bound we can place w4 in knapsack since fractions are allowed in
calculation of lower bound.

Lower bound = 10 + 10 + 12 + (
3

X 18) = 32 + 6 = 38

9

Knapsack problem is maximization problem but branch and bound technique is

applicable for only minimization problems. In order to convert maximization problem
into minimization problem we have to take negative sign for upper bound and lower
bound.

CVR COLLEGE OF ENGINEERING
An UGC Autonomous Institution - Affiliated to JNTUH

Handout – 4

Unit - V

Year and Semester: IIyr &II Sem

A Subject: Design and Analysis of Algorithms

Branch: CSE

Faculty: Dr. N. Subhash Chandra, Professor of CSE

NP Hard and NP-Complete: CO 5

Basic concepts:

Nondeterministic Polynomial time

The problems has best algorithms for their solutions have “Computing times”, that

cluster into two groups

Group 1 Group 2

 Problems with solution time bound

by a polynomial of a small degree.

 It also called “Tractable Algorithms”

 Most Searching & Sorting

algorithms are polynomial time

algorithms

 Ex: Ordered Search (O (log n)),

Polynomial evaluation O(n) Sorting

O(n.log n)

 Problems with solution times

not bound by polynomial

(simply non polynomial)

 These are hard or

intractable problems

 None of the problems in this

group has been solved by any

polynomial time algorithm

 Ex: Traveling Sales Person O(n2

2n) Knapsack O(2n/2)

No one has been able to develop a polynomial time algorithm for any problem in the

2nd group (i.e., group 2)

So, it is compulsory and finding algorithms whose computing times are greater than

polynomial very quickly because such vast amounts of time to execute that even

moderate size problems cannot be solved.

Theory of NP-Completeness:

Show that may of the problems with no polynomial time algorithms are computational

time algorithms are computationally related.

There are two classes of non-polynomial time problems

1. NP-Hard

2. NP-Complete

NP Complete Problem: A problem that is NP-Complete can solved in polynomial time

if and only if (iff) all other NP-Complete problems can also be solved in polynomial time.

NP-Hard: Problem can be solved in polynomial time then all NP-Complete problems can

be solved in polynomial time.

All NP-Complete problems are NP-Hard but some NP-Hard problems are not know to be NP-

Complete.

Nondeterministic Algorithms:

Algorithms with the property that the result of every operation is uniquely defined are

termed as deterministic algorithms. Such algorithms agree with the way programs are

executed on a computer.

Algorithms which contain operations whose outcomes are not uniquely defined but

are limited to specified set of possibilities. Such algorithms are called

nondeterministic algorithms.

The machine executing such operations is allowed to choose any one of these

outcomes subject to a termination condition to be defined later.

To specify nondeterministic algorithms, there are 3 new

sful completion

Example for Non Deterministic algorithms:

Algorithm Search(x){

//Problem is to search an element x

//output J, such that A[J]=x; or J=0 if x is not

in A J:=Choice(1,n);

if(A[J]:=x) then {

Write(J);

Success()

;

}

else{

write(0)

;

failure()

;

 }

Whenever there is a set of choices

that leads to a successful

completion then one such set of

choices is always made and the

algorithm terminates.

A Nondeterministic algorithm

terminates unsuccessfully if and

only if (iff) there exists no set of

choices leading to a successful

signal.

Nondeterministic Knapsack algorithm

Algorithm DKP(p, w, n, m, r, x){

W:=0;

P:=0;

for i:=1 to n do{ p or w)

x[i]:=choice(0, 1);

W:=W+x[i]*w[i];

P:=P+x[i]*p[i];

}

if((W>m) or (P<r)) then Failure();

else Success();

}

The Classes NP-Hard & NP-Complete:

For measuring the complexity of an algorithm, we use the input length as the

parameter. For example, An algorithm A is of polynomial complexity p() such that the

computing time of A is O(p(n)) for every input of size n.

Decision problem/ Decision algorithm: Any problem for which the answer is either

zero or one is decision problem. Any algorithm for a decision problem is termed a

decision algorithm.

Optimization problem/ Optimization algorithm: Any problem that involves the

identification of an optimal (either minimum or maximum) value of a given cost

function is known as an optimization problem. An optimization algorithm is used to

solve an optimization problem.

P

polynomial time.

is the set of all decision problems solvable by nondeterministic algorithms

in polynomial time.

Since deterministic algorithms are just a special case of nondeterministic, by this

we concluded that P ⊆ NP

Commonly believed relationship between P & NP

The most famous unsolvable problems in Computer Science is Whether P=NP or

P≠NP In considering this problem, s.cook formulated the following question.

If there any single problem in NP, such that if we showed it to be in ‘P’ then that

would imply that P=NP.

Cook answered this question with

Theorem: Satisfiability is in P if and only if (iff) P=NP

Let L1 and L2 be problems, Problem L1 reduces to L2 (written L1 α L2) iff there is a

way to solve L1 by a deterministic polynomial time algorithm using a deterministic

algorithm that solves L2 in polynomial time

This implies that, if we have a polynomial time algorithm for L2, Then we can solve L1 in

polynomial time.

L1 α L2 and L2 α L3 then L1 α L3

A problem L is NP-Hard if and only if (iff) satisfiability reduces to L ie., Statisfiability α L

A problem L is NP-Complete if and only if (iff) L is NP-Hard and L Є NP

Commonly believed relationship among P, NP, NP-Complete and NP-Hard

Most natural problems in NP are either in P or NP-complete.

Examples of NP-complete problems:

 Packing problems: SET-PACKING, INDEPENDENT-SET.

 Covering problems: SET-COVER, VERTEX-COVER.

 Sequencing problems: HAMILTONIAN-CYCLE, TSP.

 Partitioning problems: 3-COLOR, CLIQUE.

 Constraint satisfaction problems: SAT, 3-SAT.

 Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK.

Cook’s Theorem: States that satisfiability is in P if and only if
P=NP If P=NP then satisfiability is in P

If satisfiability is in P, then

P=NP To do this

 algorithm

Then formula Q(A, I), Such that Q is satisfiable iff ‘A’ has a successful

termination with Input I.

 If the length of ‘I’ is ‘n’ and the time complexity of A is p(n) for some

polynomial p() then length of Q is O(p3(n) log n)=O(p4(n))

The time needed to construct Q is also O(p3(n) log n).

 A deterministic algorithm ‘Z’ to determine the outcome of ‘A’ on any

input ‘I’

Algorithm Z computes ‘Q’ and then uses a deterministic algorithm for the

satisfiability problem to determine whether ‘Q’ is satisfiable.

 If O(q(m)) is the time needed to determine whether a formula of length

‘m’ is satisfiable then the complexity of ‘Z’ is O(p3(n) log n +

q(p3(n)log n)).

 If satisfiability is ‘p’, then ‘q(m)’ is a polynomial function of ‘m’ and the

complexity of ‘Z’ becomes ‘O(r(n))’ for some polynomial ‘r()’.

 Hence, if satisfiability is in p, then for every nondeterministic algorithm A

in NP, we can obtain a deterministic Z in p.

By this we shows that satisfiability is in p then P=NP

	DESIGN AND ANALYSIS OF ALGORITHMS
	Dr. N. Subhash Chandra
	Course Objectives

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 1
	Unit - 1
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 2
	Unit - 1
	Year and Semester: IIyr &II Sem
	Faculty: Dr.N. Subhash Chandra, Professor of CSE
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 3
	Unit - 1
	Year and Semester: IIyr &II Sem
	Faculty: Dr.N. Subhash Chandra, Professor of CSE
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 4
	Unit - 1
	Year and Semester: IIyr &II Sem
	Faculty: Dr.N. Subhash Chandra, Professor of CSE
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 5
	Unit - 1
	Year and Semester: IIyr &II Sem
	Faculty: Dr.N. Subhash Chandra, Professor of CSE
	Example :
	Example:
	Example:
	Example:
	Example :Analysis of bubble sort
	Example :Analysis of binary search
	General rules for the analysis of programs

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 6
	Unit - 1
	Year and Semester: IIyr &II Sem
	Faculty: Dr.N. Subhash Chandra, Professor of CSE
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 7
	Unit - 1
	Year and Semester: IIyr &II Sem
	Faculty: Dr.N. Subhash Chandra, Professor of CSE
	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 1
	Unit - II
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Set:
	Disjoint Sets:
	Disjoint Set Operations:
	Disjoint set Union:
	Example:
	Find:
	Set Representation:
	Example:
	Disjoint Union:
	Find:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 2
	Unit - II
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Union and Find Algorithms: CO2
	Example:
	Algorithm for Union operation:
	Algorithm SimpleUnion(i,j)
	}
	Algorithms SimpleFind(i)
	}
	Weighting rule for Union:
	Algorithm WeightedUnion(i,j)
	}
	Algorithm CollapsingFind(i)
	}

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 3
	Unit - II
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Techniques for Traversal of a Binary Tree:
	Inorder Traversal:
	Preorder Traversal:
	Postorder Traversal:
	Examples for binary tree traversal/search technique:
	Example 2:
	Example 3:
	Example 4:
	Example 5:
	Non Recursive Binary Tree Traversal Algorithms:
	Inorder Traversal:
	Preorder Traversal:
	Postorder Traversal:
	Example 1:
	Inorder Traversal:
	Postorder Traversal:
	Preorder Traversal:
	Example 2:
	Inorder Traversal:
	Postorder Traversal:
	Preorder Traversal:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 5
	Unit - II
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Articulation Points by Depth First Search:
	L (w) ≥ DFN (u)
	6.6.1. Algorithm for finding the Biconnected Components:
	6.7.1. Example:
	Finding the Articulation Points:
	Example:
	Finding the Articulation Points:
	Example:
	Finding the Articulation Points:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 6
	Unit - II
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	AND/OR GRAPH: CO2
	Example 1:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 1
	Unit - III
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Control Abstraction of Divide and Conquer
	Binary Search

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 2
	Unit - III
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Merge Sort: CO3
	Algorithm
	Example
	Tree Calls of MERGESORT(1, 8)
	Tree Calls of MERGE()
	Analysis of Merge Sort

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 3
	Unit - III
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Quick Sort
	Analysis of Quick Sort:
	Worst Case Analysis
	Best Case Analysis
	Average Case Analysis
	T(n)= O(n log n)

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 4
	Unit - III
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	CONTROL ABSTRACTION
	KNAPSACK PROBLEM
	
	Algorithm
	Algorithm GreedyKnapsack (m, n)
	Running time:
	Example:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 5
	Unit - III
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	4.4. OPTIMAL STORAGE ON TAPES
	
	
	Example
	Solution:
	Algorithm:
	Algorithm Store (n, m)
	JOB SEQUENCING WITH DEADLINES
	Example:
	Algorithm:
	Algorithm GreedyJob (d, J, n)

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 6
	Unit - III
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Graph Algorithms: CO3
	Representation of Graphs:
	Paths and Cycles:
	Subgraphs and Spanning Trees:
	Minimum Spanning Trees (MST):
	Here are some examples:
	Kruskal’s Algorithm
	Algorithm:
	Algorithm Kruskal (E, cost, n, t)
	Running time:
	Example 1:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 7
	Unit - III
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM: CO3
	Algorithm Prim (E, cost, n, t)
	Running time:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 7
	Unit - III
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	The Single Source Shortest-Path Problem: DIJKSTRA'S ALGORITHMS: CO3
	Algorithm:
	Running time:
	 For heap A = O (n); B = O (log n); C = O (log n) which gives O (n + m log n) total.

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 1
	Unit - IV
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	5.1 MULTI STAGE GRAPHS
	ALGORITHM:
	Complexity Analysis:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 2
	Unit - IV
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	All pairs shortest paths: CO3
	Example 1:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 3
	Unit - IV
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	TRAVELLING SALESPERSON PROBLEM: CO4
	Example 1:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 3
	Unit - IV
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	OPTIMAL BINARY SEARCH TREE:CO4
	
	Example 1:
	Solution:
	Example 2:
	Example 3:
	Solving c(0,n):

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 4
	Unit - IV
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	0/1 – KNAPSACK-CO4
	Example 1:
	Solution:
	Other Solution:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 5
	Unit - IV
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Reliability Design- CO4
	Example 1:
	Solution:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 6
	Unit - IV
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	BACKTRACKING -CO4
	General Method:
	Terminology:
	Planar Graphs:
	N-Queens Problem:
	Example:
	4 – Queens Problem:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 7
	Unit - IV
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Sum of Subsets-CO4
	Graph Coloring (for planar graphs):
	Hamiltonian Cycles:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 1
	Unit - V
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Branch and Bound General method: CO5
	Least Cost (LC) search:
	Control Abstraction for LC-Search:
	Bounding:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 2
	Unit - V
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	FIFO Branch and Bound:CO5
	LC Branch and Bound:
	Traveling Sale Person Problem:

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 3
	Unit - V
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	0/1 Knapsack Problem: CO5

	CVR COLLEGE OF ENGINEERING
	An UGC Autonomous Institution - Affiliated to JNTUH
	Handout – 4
	Unit - V
	Year and Semester: IIyr &II Sem
	Faculty: Dr. N. Subhash Chandra, Professor of CSE
	Theory of NP-Completeness:
	Nondeterministic Algorithms:
	Example for Non Deterministic algorithms:
	Examples of NP-complete problems:

