
DESIGN AND ANALYSIS OF ALGORITHMS 

Dr. N. Subhash Chandra 

Course Objectives 

       Upon completion of this course, students will be able to do the following: 

1. Analyze the asymptotic performance of algorithms. 
2. To understand how the choice of data structures and algorithm design methods 

impacts the performance of programs. 
3. To solve problems using algorithm design methods such as the greedy method, 

divide and conquer, dynamic programming, backtracking and branch and bound 

 
Course Outcomes 

 

CO 1: Analyze algorithms, improve the efficiency of algorithms and ability to understand 

and    
          estimate the performance of algorithm.  
 
CO 2: Choose the appropriate data structure and algorithms design method for a specified    

           application.  
 
CO 3: Apply different designing methods for development of algorithms to realistic problem,  

         such as divide-and-conquer, greedy algorithms, synthesize divide-and-conquer, 
greedy     
          algorithms, and analyze them. 

 

CO 4: Describe the dynamic-programming, backtracking paradigm and explain when an  
           algorithm design situation calls for it. Recite algorithms that employ these 
paradigms. 

 
CO 5: Synthesize dynamic-programming, backtracking algorithms, and analyze them. To     
           apply algorithm design paradigms for complex problems and solve novel problems,    
           by choosing the appropriate algorithm design technique for their   solution and 

justify  
           their selection. 
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Algorithm, pseudo code for expressing algorithms.  CO1 

Definition: An algorithm is a sequence of unambiguous instructions for solving a problem. 

It is a step by step procedure with the input to solve the problem in a finite amount of time 

to obtain the required output. 

Characteristics of an algorithm:  

 Every algorithm must be satisfied the following characteristics. 

Input   : Zero / more quantities are externally supplied. 

Output  : At least one quantity is produced. 

Definiteness : Each instruction is clear and unambiguous. 

Finiteness : If the instructions of an algorithm is traced then for all cases the algorithm 

must terminates after a finite number of steps. 

Efficiency : Every instruction must be very basic and runs in short time with effective 

results better than human computations. 

 

Pseudo code for Expressing Algorithms: 

1. An algorithm is a procedure. It has two parts; the first part is head and the second part is 

body. 

2. The Head section consists of keyword Algorithm and Name of the algorithm with 

parameter list.  

E.g. Algorithm name1(p1, p2,…,p3) 

The head section also has the following: 

//Problem Description: 

//Input: 

//Output: 

3. In the body of an algorithm various programming constructs like if, for, while and some 

statements like assignments are used. 

4. The compound statements may be enclosed with { and } brackets. if, for, while can be 

open and closed by {, } respectively. Proper indention is must for block. 

 



5. Comments are written using // at the beginning. 

6. The identifier should begin by a letter and not by digit. It contains alpha numeric letters 

after first letter. No need to mention data types. 

7. The left arrow “:=” used as assignment operator. E.g. v:=10 

8. Boolean operators (TRUE, FALSE), Logical operators (AND, OR, NOT) and Relational 

operators (<,<=, >, >=,=, ≠, <>) are also used. 

9. Input and Output can be done using read and write. 

10. Array[], if then else condition, branch and loop can be also used in algorithm. 

 

Example: 

The greatest common divisor(GCD) of two nonnegative integers m and n (not-both-

zero,m<=n), denoted gcd(m, n), is defined as the largest integer that divides both m and n 

evenly, i.e., with a remainder of zero. 

Euclid’s algorithm is based on applying repeatedly the equality gcd(m, n) = gcd(n, m mod 

n), where m mod n is the remainder of the division of m by n, until m mod n is equal to 0. 

Since gcd(m,0) = m, the last value of m is also the greatest common divisor of the initial m 

and n. 

gcd(60, 24) can be computed as follows:gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12. 

 

Euclid’s algorithm for computing gcd(m, n) in simple steps 

 

Step 1 If n = 0, return the value of m as the answer and stop; otherwise, proceed to Step 

2. 

Step 2 Divide m by n and assign the value of the remainder to r. 

Step 3 Assign the value of n to m and the value of r to n. Go to Step 1. 

 

Euclid’s algorithm for computing gcd(m, n) expressed in pseudocode 

ALGORITHM Euclid_gcd(m, n) 

{ 

//Computes gcd(m, n) by Euclid’s algorithm 

//Input: Two nonnegative, not-both-zero integers m and n 

//Output: Greatest common divisor of m and n 

while n ≠ 0 do 

{ 

r := m mod n; 



m:=n; 

n:=r; 

} 

return m; 

} 
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Fundamentals Algorithm, Problem Solving: CO1 

(i) Understanding the Problem 

 This is the first step in designing of algorithm. 

 Read the problem’s description carefully to understand the problem statement 

completely. 

 Ask questions for clarifying the doubts about the problem. 

 Identify the problem types and use existing algorithm to find solution. 

 Input (instance) to the problem and range of the input get fixed. 

(ii) Decision making 

The Decision making is done on the following: 

(a) Ascertaining the Capabilities of the Computational Device 

1. In random-access machine (RAM), instructions are executed one after 

another (The central assumption is that one operation at a time). 

Accordingly, algorithms designed to be executed on such machines are 

called sequential algorithms. 

2. In some newer computers, operations are executed concurrently, i.e., 

in parallel. Algorithms that take advantage of this capability are called 

parallel algorithms. 

3. Choice of computational devices like Processor and memory is mainly 

based on space and time efficiency 

(b) Choosing between Exact and Approximate Problem Solving 

i. The next principal decision is to choose between solving the problem 

exactly or solving it approximately. 

ii. An algorithm used to solve the problem exactly and produce correct 

result is called an exact algorithm. 

iii. If the problem is so complex and not able to get exact solution, then 

we have to choose an algorithm called an approximation algorithm. 

 



i.e., produces an approximate answer. E.g., extracting square roots, 

solving nonlinear equations, and evaluating definite integrals. 

 

(c) Algorithm Design Techniques 

1. An algorithm design technique (or “strategy” or “paradigm”) is a 

general approach to solving problems algorithmically that is applicable 

to a variety of problems from different areas of computing. 

2. Algorithms+ Data Structures = Programs 

3. Though Algorithms and Data Structures are independent, but they are 

combined to develop program. Hence the choice of proper data 

structure is required before designing the algorithm. 

4. Implementation of algorithm is possible only with the help of 

Algorithms and Data Structures 

5. Algorithmic strategy / technique / paradigm is a general approach by 

which many problems can be solved algorithmically. E.g., Brute Force, 

Divide and Conquer, Dynamic Programming, Greedy Technique and so 

on. 

(iii) Methods of Specifying an Algorithm 

There are three ways to specify an algorithm. They are: 

a. Natural language 

b. Pseudocode 

c. Flowchart 

Pseudocode and flowchart are the two options that are most widely used nowadays 

for specifying algorithms. 

a. Natural Language 

It is very simple and easy to specify an algorithm using natural language. But 

many times, specification of algorithm by using natural language is not clear 

and thereby we get brief specification. 

b. Pseudocode 

Pseudocode is a mixture of a natural language and programming language 

constructs. Pseudocode is usually more precise than natural language. 

c. Flowchart 

In the earlier days of computing, the dominant method for specifying 

algorithms was a flowchart, this representation technique has proved to be 

inconvenient.  Flowchart is a graphical representation of an algorithm. It is a method 



of expressing an algorithm by a collection of connected geometric shapes containing 

descriptions of the algorithm’s steps. 

 

(iv) Proving an Algorithm’s Correctness 

Once an algorithm has been specified then its correctness must be proved.  

An algorithm must yields a required result for every legitimate input in a finite 

amount of time. 

Example: Addition of a and b 

Start 

Input the value of a; 

Input the value of b; 

c: = a + b; 

Display the value of c; 

Stop 

 

 (v) Analyzing an Algorithm 

For an algorithm the most important is efficiency. In fact, there are two kinds of algorithm 

efficiency. They are: 

Time efficiency, indicating how fast the algorithm runs, and 

Space efficiency, indicating how much extra memory it uses. 

The efficiency of an algorithm is determined by measuring both time efficiency and 

space efficiency. 

So factors to analyze an algorithm are: 

1. Time efficiency of an algorithm 

2. Space efficiency of an algorithm 

3. Simplicity of an algorithm 

4. Generality of an algorithm 

(vi) Coding an Algorithm 

language 

like C, C++, JAVA. 

1. The transition from an algorithm to a program can be done either incorrectly 

or very inefficiently. Implementing an algorithm correctly is necessary. The 

Algorithm power should not reduced by inefficient implementation. 



2. Standard tricks like computing a loop’s invariant (an expression that does not 

change its value) outside the loop, collecting common subexpressions, 

replacing expensive operations by cheap ones, selection of programming 

language and so on should be known to the programmer. 

3. Typically, such improvements can speed up a program only by a constant 

factor, whereas a better algorithm can make a difference in running time by 

orders of magnitude. But once an algorithm is selected, a 10–50% speedup 

may be worth an effort. 

4. It is very essential to write an optimized code (efficient code) to reduce the 

burden of 

5. compiler. 
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Performance Analysis: CO1 

The efficiency of an algorithm can be in terms of time and space. The algorithm 

efficiency can be analyzed by the following ways. 

a) Analysis Framework. 

b) Asymptotic Notations and its properties. 

c) Mathematical analysis for Recursive algorithms. 

d) Mathematical analysis for Non-recursive algorithms. 

a)  Analysis Framework: There are two kinds of efficiencies to analyze the efficiency 

of any algorithm. They are: 

Time efficiency, indicating how fast the algorithm runs, and 

Space efficiency, indicating how much extra memory it uses. 

The algorithm analysis framework consists of the following: 

i. Measuring an Input’s Size 

ii. Units for Measuring Running Time 

iii. Orders of Growth 

iv. Worst-Case, Best-Case, and Average-Case Efficiencies 

i) Measuring an Input’s Size: An algorithm’s efficiency is defined as a function of 

some parameter n indicating the algorithm’s input size. In most cases, 

selecting such a parameter is quite straightforward. 

For example, it will be the size of the list for problems of sorting, 

searching.  For the problem of evaluating a polynomial p(x) = anx
n + . . . + a0 

of degree n, the size of the parameter will be the polynomial’s degree or the 

number of its coefficients, which is larger by 1 than its degree. 

In computing the product of two n × n matrices, the choice of a 

parameter indicating an input size does matter. 

Consider a spell-checking algorithm. If the algorithm examines 

individual characters of its input, then the size is measured by the number of 

characters. 

 



In measuring input size for algorithms solving problems such as checking 

primality of a positive integer n. the input is just one number. 

The input size by the number b of bits in the n’s binary representation is 

b=(log2 n)+1. 

(ii) Units for Measuring Running Time : Some standard unit of time measurement 

such as a second, or millisecond, and so on can be used to measure the running time 

of a program after implementing the algorithm. 

Drawbacks 

a) Dependence on the speed of a computer. 

b) Dependence on the quality of a program implementing the algorithm. 

c) The compiler used in generating the machine code. 

d) The difficulty of clocking the actual running time of the program. 

So, we need metric to measure an algorithm’s efficiency that does not depend on 

these extraneous factors. One possible approach is to count the number of times 

each of the algorithm’s operations is executed. This approach is excessively difficult. 

The most important operation (+, -, *, /) of the algorithm, called the basic 

operation. Computing the number of times the basic operation is executed is easy. 

The total running time is 

determined by basic operations count. 

(iii) Orders of Growth 

A difference in running times on small inputs is not what really distinguishes 

efficient algorithms from inefficient ones. 

For example, the greatest common divisor of two small numbers, it is not 

immediately clear how much more efficient Euclid’s algorithm is compared to the 

other algorithms, the difference in algorithm efficiencies becomes clear for larger 

numbers only. For large values of n, it is the function’s order of growth that counts 

just like the Table 1.1, which contains values of a few functions particularly 

important for analysis of algorithms. 

 

Table 1.1 Growth of function order 



 

 

(iv) Worst-Case, Best-Case, and Average-Case Efficiencies Consider Sequential 

Search algorithm some search key K 

ALGORITHM SequentialSearch(A[0..n - 1], X) 

{ 

//Searches for a given value in a given array by sequential search 

//Input: An array A[0..n - 1] and a search key X 

//Output: The index of the first element in A that matches K or -1 if 

there are no 

// matching elements 
i ←0; 

while i < n and A[i] ≠ X do 
     i ←i + 1; 

                        if i < n return i 

        else return -1; 

} 
Clearly, the running time of this algorithm can be quite different for the same 

list size n.  In the worst case, there is no matching of elements or the first matching 

element can found at last on the list. In the best case, there is matching of elements 

at first on the list. 

Worst-case efficiency 

The worst-case efficiency of an algorithm is its efficiency for the worst case 

input of size n.  The algorithm runs the longest among all possible inputs of that size.  

For the input of size n, the running time is Cworst(n) = n. 

Best case efficiency 

The best-case efficiency of an algorithm is its efficiency for the best case input 

of size n.  The algorithm runs the fastest among all possible inputs of that size n. In 

sequential search, If we search a first element in list of size n. (i.e. first element 

equal toa search key), then the running time is Cbest(n) = 1 

Average case efficiency 

The Average case efficiency lies between best case and worst case. To analyze the 

algorithm’s average case efficiency, we must make some assumptions about possible 

inputs of size n. 



Time complexity-Space Complexity 

• Two criteria are used to judge algorithms: (i) time complexity (ii) space complexity. 

• Space Complexity of an algorithm is the amount of memory it needs to run to 

completion. 

• Time Complexity of an algorithm is the amount of CPU time it needs to run to 

completion. 

Space Complexity: 

Memory space S(P) needed by a program P, consists of two components:  

• A fixed part: needed for instruction space (byte code), simple variable space, 

constants space etc.  c 

• A variable part: dependent on a particular instance of input and output data. 

 Sp(instance) 

S(P) = c + Sp(instance) 

Example 1: 

Algorithm abc (a, b, c) 

{ 

1.  return a+b+b*c+(a+b-c)/(a+b)+4.0; 

} 

 For every instance 3 computer words required to store variables: a, b, and c. 

Therefore Sp()= 3. S(P) = 3. 

Example 2: 

Algorithm Sum(a[], n) 

{ 

1.     s:= 0.0; 

2.     for i = 1 to n do 

3.           s := s + a[i]; 

4.     return s; 

} 

Every instance needs to store array a[] & n.  

1. Space needed to store n = 1 word.  

2. Space needed to store a[ ] = n floating point  words (or at least n words) 

3. Space needed to store i and s = 2 words 

                               Sp(n) = (n + 3). Hence S(P) = (n + 3). 

Time Complexity: 

• How to measure T(P)?  



– Measure experimentally, using a “stop watch”  

    T(P) obtained in secs, msecs. 

– Count program steps  T(P) obtained as a step count. 

• Fixed part is usually ignored; only the variable part tp() is measured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What is a program step? 

• a+b+b*c+(a+b)/(a-b)  one step;  

• comments  zero steps; 

• while (<expr>) do  step count equal to the number of times <expr> is 

executed. 

• for i=<expr> to <expr1> do  step count equal to number of times <expr1> 

is checked. 

 

 

 

 

 

 

 

 

 

 Statements S/E Freq. Total 

1 Algorithm Sum(a[],n) 0 - 0 

2 { 0 - 0 

3    S = 0.0; 1 1 1 

4    for i=1 to n do 1 n+1 n+1 

5      s = s+a[i]; 1 n n 

6    return s; 1 1 1 

     

7 } 0 - 0 

Total Count 2n+3 
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Asymptotic notations: CO1 

Asymptotic notation is a notation, which is used to take meaningful statement about 

the efficiency of a program. The efficiency analysis framework concentrates on the order of 

growth of an algorithm’s basic operation count as the principal indicator of the algorithm’s 

efficiency. To compare and rank such orders of growth, computer scientists use five 

notations, they are: 

O - Big oh notation 

Ω - Big omega notation 

Θ - Big theta notation 

o- Little oh notation 

ω-Little omega notation 

Asymptotically Non-Negative: A function g(n) is asymptotically nonnegative, if g(n)>=0 for 

all n>=n0 where n0 in N={0,1,2,3,…} 

 

Asymptotic Upper Bound: O(Big-oh) 

 

Definition: Let f(n) and g(n) be asymptotically non-negative functions. We say 

 f (n) is  in  O ( g ( n )) if there is a real positive constant c and a positive Integer n0  such 

that for every n >= n0 , 0 <=f (n) <= c  g (n ).    

(Or) 

  O(g(n))=  {   f(n)  | there exist a positive constant c and a positive integer n0 such that  

                    0 <=f( n) <= c  g (n )  for all n >= n0   } 

The Figure 1.1 shows the growth function of f(n) and g(n) for case of asymptotic upper 

bound 

 



 

Figure 1.1 f(n)=O(g(n) growth function  

Example 1: Verify 5n+2 = O(n). 

Solution: 

 From the definition of Big Oh, there must exist c>0 and integer n0 >0 such that  

0 <= 5n+2<=c*n        for all n>= n0. 

Dividing both sides of the inequality by n>0 we get: 

                        0 <= 5+2/n <= c. 

Cleary 2/n <= 2, since 2/n>0 becomes smaller when n increases. 

There are many choices here for c and  n0.  

 If we choose n0 =1 then c >= 5+2/1= 7. 

 If we choose c=6, then 0 <= 5+2/n<=6. So n0 >= 2. 

 In either case (we only need one!) we have a c>o and n0 >0 such that 0 <= 

5n+2<=cn for all n>= n0 .  

 So the definition is satisfied and 5n+2 = O(n) 

 

Asymptotic Lower Bound: Ω(Big-Omega) 

 

Definition:  

          Let f(n) and g(n) be asymptotically non-negative functions. We say 

 f (n) is Ω ( g ( n )) if there is a positive real constant c and a positive integer n0  such that 

for every n >= n0  0 <=  c  * g (n ) <=  f ( n).      

(Or) 

Ω ( g ( n )) = {  f (n) | there exist positive constant c and a positive integer n0  such that 0 

<=  c  * g (n ) <=  f ( n)  for all n >= n0   } 



 

From the definition of Omega, there must exist c>0 and integer n0>0 such that 0 <= c*n 

<= 5n-20 for all n>= n0 

Dividing the inequality by n>0 we get: 0 <= c <= 5-20/n for all n>= n0. 

20/n <= 20,  and 20/n becomes smaller as n grows. 

There are many choices here for c and  n0. 

  Since c > 0,  5 – 20/n >0 and n0 >4 

For example, if we choose c=4, then 5 – 20/n <= 4 and n0 >= 20 

In this case we have a c>o and n0>0 such that 0 <= c*n <= 5n-20 for all n >=n0. So the 

definition is satisfied and 5n-20 in Ω (n) 

 

Asymptotic Tightly Bound: θ(Theta) 

Definition: Let f (n) and g(n) be asymptotically non-negative functions. We say  f (n) is θ( 

g ( n )) if there are positive constants c, d  and a positive integer n0 such that for every n 

>= n0  

  0 <= c  g (n ) <=  f ( n) <= d  g ( n ). 

(Or ) 

θ (g(n))={f(n)|there exist positive constants c, d and a positive integer n0 such that 0 <= c 

 g (n ) <=  f ( n) <= d  g ( n ). for all n >= n0   } 
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Asymptotic o(Little-oh) 

Definition:  Let f (n) and g(n) be asymptotically non-negative functions.  We say f ( n ) is  

o ( g ( n)) if  for every positive real constant c  there exists a positive integer n0 such that 

for all n>=n0  

0 <= f(n) < c   g (n ).   

      (Or) 

o(g(n))={f(n): for any positive constant c >0, there exists a positive integer n0 > 0 such 

that  0 <= f( n) < c  g (n ) for all n >= n0 } 
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Calculating the running time of programs: CO1 

 

Let us now look into how big-O bounds can be computed for 

some common algorithms. 

 

Example : 

 

 
2n2 + 5n – 6 = O (2n) 

 
2n2 + 5n – n) 

2n2 + 5n – 6 = O (n3) 2n2 + 5n – 3) 
2n2 + 5n – 6 = O (n2) 2n2 + 5n – 2) 

2n2 + 5n –  2n2 + 5n – (n) 

 
2n2 + 5n – n) 

 
2n2 + 5n – 6 = o (2n) 

2n2 + 5n – 3) 2n2 + 5n – 6 = o (n3) 

2n2 + 5n – 2) 2n2 + 5n – 2) 

2n2 + 5n –  2n2 + 5n –  

 

 

Example: 

 

If the first program takes 100n2 milliseconds and while the second 

takes 5n3 milliseconds, then might not 5n3 program better than 100n2 
program? 

 
As the programs can be evaluated by comparing their running time 

functions, with constants by proportionality neglected. So, 5n3 
program be better than the 100n2 program. 

 
5 n3/100 n2 = n/20 

 
for inputs n < 20, the program with running time 5n3 will be faster 

than those the one with running time 100 n2. Therefore, if the 
program is to be run mainly on inputs of small size, we would indeed 
prefer the program whose running time was O(n3) 

 



 

However, as ‘n’ gets large, the ratio of the running times, which is 

n/20, gets arbitrarily larger. Thus, as the size of the input increases, 
the O(n3) program will take significantly more time than the O(n2) 
program. So it is always better to prefer a program whose running 
time with the lower growth rate. The low growth rate function’s such 

as O(n) or O(n log n) are always better. 
 

Example: 

 
Analysis of simple for loop 

 

Now let’s consider a simple for loop: 

 
for (i = 1; i<=n; i++) 

v[i] = v[i] + 1; 

 

This loop will run exactly n times, and because the inside of the loop 
takes constant time, the total running time is proportional to n. We 
write it as O(n). The actual number of instructions might be 50n, 

while the running time might be 17n microseconds. It might even be 
17n+3 microseconds because the loop needs some time to start up. 
The big-O notation allows a multiplication factor (like 17) as well as an 
additive factor (like 3). As long as it’s a linear function which is 

proportional to n, the correct notation is O(n) and the code is said to 
have linear running time. 

Example: 

Analysis for nested for loop 

 

Now let’s look at a more complicated example, a nested for loop: 

 
for (i = 1; i<=n; i++) 

for (j = 1; j<=n; j++) 

a[i,j] = b[i,j] * x; 

 

The outer for loop executes N times, while the inner loop executes n 
times for every execution of the outer loop. That is, the inner loop 

2 times. The assignment statement in the inner 
loop takes constant time, so the running time of the code is O(n2) 
steps. This piece of code is said to have quadratic running time. 

Example: 

Analysis of matrix multiply 

 

code to compute the matrix product C = A * B is given below. 
 



for (i = 1; i<=n; i++) 

for (j = 1; j<=n; j++) 
C[i, j] = 0; 

for (k = 1; k<=n; k++) 

C[i, j] = C[i, j] + A[i, k] * B[k, j]; 

 

There are 3 nested for loops, each of which runs n times. The 

innermost loop therefore executes n*n*n = n3 times. The innermost 
statement, which contains a scalar sum and product takes constant 
O(1) time. So the algorithm overall takes O(n3) time. 

Example :Analysis of bubble sort 

 

The main body of the code for bubble sort looks something like this: 

 
for (i = n-1; i<1; i--) 

for (j = 1; j<=i; j++) 

if (a[j] > a[j+1]) 

swap a[j] and a[j+1]; 

 

This looks like the double. The innermost statement, the if, takes O(1) 
time. It doesn’t necessarily take the same time when the condition is 
true as it does when it is false, but both times are bounded by a 
constant. But there is an important difference here. The outer loop 

executes n times, but the inner loop executes a number of times that 

depends on i. The first time the inner for executes, it runs i = n-1 
times. The second time it runs n-2 times, etc. The total number of 

times the inner if statement executes is therefore: 
 

(n-1) + (n-2) + ... + 3 + 2 + 1 

 

This is the sum of an arithmetic series. 

The value of the sum is n(n-1)/2. So the running time of bubble sort is 
O(n(n-1)/2), which is O((n2-n)/2). Using the rules for big-O given 
earlier, this bound simplifies to O((n2)/2) by ignoring a smaller term, 
and to O(n2), by ignoring a constant factor. Thus, bubble sort is an 

O(n2) algorithm. 

 

Example :Analysis of binary search 

 

Binary search is a little harder to analyze because it doesn’t have a for 

loop. But it’s still pretty easy because the search interval halves each 
time we iterate the search. The sequence of search intervals looks 
something like this: 

 
n, n/2, n/4, ..., 8, 4, 2, 1 

 

It’s not obvious how long this sequence is, but if we 



take logs, it is: log2 n, log2 n - 1, log2 n - 2, ..., 

3, 2, 1, 0 

Since the second sequence decrements by 1 each time down to 0, its length 
must be 
log2 n + 1. It takes only constant time to do each test of binary 
search, so the total running time is just the number of times that we 
iterate, which is log2n + 1. So binary search is an O(log2 n) algorithm. 
Since the base of the log doesn’t matter in an asymptotic bound, we 
can write that binary search is O(log n). 

General rules for the analysis of programs 

In general the running time of a statement or group of statements 

may be parameterized by the input size and/or by one or more 

variables. The only permissible parameter for the running time of the 

whole program is ‘n’ the input size. 

 
1. The running time of each assignment read and write statement 

can usually be taken to be O(1). (There are few exemptions, 
such as in PL/1, where assignments can involve arbitrarily 
larger arrays and in any language that allows function calls in 

arraignment statements). 
 

2. The running time of a sequence of statements is determined by the sum 

rule. 

I.e. the running time of the sequence is, to with in a 
constant factor, the largest running time of any 
statement in the sequence. 

 
3. The running time of an if–statement is the cost of conditionally 

executed statements, plus the time for evaluating the 
condition. The time to evaluate the condition is normally O(1) 
the time for an if–then–else construct is the time to evaluate 

the condition plus the larger of the time needed for the 
statements executed when the condition is true and the time 
for the statements executed when the condition is false. 

 

4. The time to execute a loop is the sum, over all times around 
the loop, the time to execute the body and the time to 

evaluate the condition for termination (usually the latter is 
O(1)). Often this time is, neglected constant factors, the 

product of the number of times around the loop and the largest 

possible time for one execution of the body, but we must 
consider each loop separately to make sure. 
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Probabilities Analysis: CO1 

Probabilities Analysis:  

this analysis uses probability 

Example: 

A sample space S will for us be some collection on elementary events.  

For instance, results of coin flips. Then S={HH, TH, HT, TT}.  

 An event E is any subset of S.  

For example, E= {TH, HT} be the event of S 

A probability distribution P{} on S is a mapping from events on S to the real numbers 

satisfying for any events A and B. A’ be the complement of A  

        (a) P{A} >= 0   (b) P{S} = 1 (c) P{A∪ B} = P{A} + P{B} if A ∩ B = ∅  

Result 1 :     P{S∪ ∅} = P{S} + P{∅} = 1 + P{∅}. So P{∅} = 0.  

Result 2 :     P{S}= P{A∪ A’} = P{A} + P{A’}. So P{A’}=1- P{A}. 

 

 

Conditional Probability and Independence 

The conditional probability of an event A given an event B is defined to be: P{A|B} = 

P{A∩B}/P{B}.  

• Two events are independent if Pr{A∩B} = Pr{A}Pr{B} 

 • Given a collection A1, A2,… Ak of events we say they are pairwise independent if Pr{Ai ∩ 

Aj } = Pr{Ai }Pr{Aj } for any i and j.  

• They are mutually independent if for an subset Ai_1, A2,… Ai_m of then Pr{Ai_1 ∩… 

Ai_m} = Pr{Ai_1}* *Pr{Ai_m} 

 

A discrete random variable X is a function from a finite sample space S to the real numbers.  

• Given such a function X we can define the probability density function for X as: f(x) = 

Pr{X = x} where the little x is a real number. 

 



The expected value of a random variable X is defined to be:  

• The variance of X, Var[X] is defined to be: E[(X- E(X))2]= E[X2] -(E[X])2 • The standard 

deviation of X, σX, is defined to be the (Var[X])1/2. 

 

Indicator Random Variables 

• In order to analyze the hiring problem we need a convenient way to convert between 

probabilities and expectations.  

• We will use indicator random variables to help us do this.  

• Given a sample space S and an event A. Then the indicator random variable I{A} 

associated with event A is define as: 𝐼(𝐴) = {1 𝑖𝑓 𝐴 𝑜𝑐𝑐𝑢𝑟0 𝑖𝑓 𝐴 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟 

Example:  

Suppose our sample space S={H,T} with P{H}=P{T}=1/2.  

We can define an indicator random variable XH associated with the coin coming up heads:  

                         XH= 𝐼(𝐻) = {1 𝑖𝑓 𝐻 𝑜𝑐𝑐𝑢𝑟0 𝑖𝑓 𝑇 𝑜𝑐𝑐𝑢𝑟 

The expected number of heads in one coin flip is then 

    E[XH]=P(H)*I(H)+P(T)*I(T) 

             = ½*1+1/2*0 =1/2. 

 

Lemma 1: Given a sample space S and an event A in S, let XA=I{A}. Then E[XA]=P{A}.  

Proof: E[XA] = E[I{A}]  

                      = 1*P{A}+ 0*P{A}  

                      =P{A}. 

Indicator random variables are more useful if we are dealing with more than one coin flip.  

Let Xi be the indicator that indicates whether the result of the ith coin flip was a head.  

Consider the random variable:   X= ∑ 𝑥𝑖𝑛𝑖=1  

Then the expected number of head in n tosses is 

                      E[X]=E[∑ 𝑥𝑖𝑛𝑖=1 ]=∑ 𝐸[𝑥𝑖𝑛𝑖=1 ]=∑ 12𝑛𝑖=1 =n/2 

The Hiring Problem 

 

We will now begin our investigation of randomized algorithms with a toy problem:  

• You want to hire an office assistant from an employment agency.  

• You want to interview candidates and determine if they are better than the current 

assistant and if so replace the current assistant.  



• You are going to eventually interview every candidate from a pool of n candidates.  

• You want to always have the best person for this job, so you will replace an assistant with 

a better one as soon as you are done the interview.  

• However, there is a cost to fire and then hire someone.  

• You want to know the expected price of following this strategy until all n candidates have 

been interviewed. 

 

Algorithm Hire-Assistant(n)  

{ 

   best := dummy candidate; 

  for i := 1 to n do 

  { 

     interview of candidate i ; 

     if (candidate i is better than best)  then  

      { 

                          best := i; 

                          hire candidate i; 

        } 

   } 

} 

 

• Interviewing has a low cost ci .  

• Hiring has a high cost ch.  

• Let n be the number of candidates to be interviewed and let m be the number of people 

hired.  

• The total cost then goes as O(n*ci +m*ch)  

• The number of candidates is fixed so the part of the algorithm we want to focus on is the 

m*ch term.  

• This term governs the cost of hiring. 

Worst-case Analysis 

• In the worst case, everyone we interview turns out to be better than the person we 

currently have.  

• In this case, the hiring cost for the algorithm will be O(n*ch).  

• This bad situation presumably doesn’t typically happen so it is interesting to ask what 

happens in the average case. 



Analysis of the Hiring Problem 

• Let Xi be the indicator random variable which is 1 if candidate i is hired and 0 otherwise.  

• Let  

• By our lemma E[Xi ] = Pr{candidate i is hired}  

• Candidate i will be hired if i is better than each of candidates 1 through i-1.  

• As each candidate arrives in random order, any one of the first candidate i is equally likely 

to be the best candidate so far. So E[Xi ] =1/i. 

          E[X]=E[∑ 𝑥𝑖𝑛𝑖=1 ]=∑ 𝐸[𝑥𝑖𝑛𝑖=1 ]=∑ 1𝑖𝑛𝑖=1  =ln(n)+O(1) 

Assume that the candidates are presented in random order, then algorithm Hire-Assistant 

has a hiring cost of O(ch*ln n)  
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Amortized Analysis: CO1 

What is Amortized Analysis ? 

 In amortized analysis, the time required to perform  a  sequence of 

operations is averaged over all the  operations performed. 

  No involvement of probability 

 Average performance on a sequence of operations,  even some operation is 

expensive. 

 Guarantee average performance of each operation  among the sequence in 

worst case. 

 Methods of Amortized Analysis 

 

Aggregate Method: we determine an  upper bound T(n) on the total sequence of n 

operations. The cost of each will then be T(n)/n. 

 

Accounting Method: we overcharge  some operations early and use them  to as 

prepaid charge later. 

Potential Method: we maintain credit as potential energy associated with the structure as 

a whole. 

1. Aggregate Method 

 Show that for all n, a sequence of n operations take worst-case time T(n) in total 

 In the worst case, the average cost, or amortized cost , per operation is T(n)/n.  

 The amortized cost applies to each operation, even when there are several types of 

operations in the sequence.   

Aggregate Analysis: Stack Example 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 Sequence of n push, pop, Multipop operations  

 Worst-case cost of Multipop is O(n) 

 Have n operations 

 Therefore, worst-case cost of sequence is O(n2) 

 Observations 

 Each object can be popped only once per time that it’s pushed 

 Have <= n pushes => <= n pops, including those in Multipop 

 Therefore total cost = O(n)  

 Average over n operations => O(1) per operation on average 

 Notice that no probability involved  

2. Accounting Method 

Charge i th operation a fictitious amortized cost ĉi, where $1 pays for 1 unit of work 

(i.e., time). 

 Assign different charges (amortized cost ) to different operations 

 Some are charged more than actual cost 

 Some are charged less  

 This fee is consumed to perform the operation. 

 Any amount not immediately consumed is stored in the bank for use by subsequent 

operations. 

 The bank balance  (the credit)  must not go negative!  

  

We must ensure that  

3 ops: 

 

 

 

 

  

Push(S,x) Pop(S) Multi-pop(S,k) 

Worst-

case 

cost: 

O(1) O(1) 
O(min(|S|,k) 

= O(n) 



 for all n.                                




n

i

i

n

i

i
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 Thus, the total amortized costs provide an upper bound on the total true costs. 

 

 

 

 

 

 

 

 

 

 

 

 

 When pushing an object, pay $2  

 $1 pays for the push 

 $1 is prepayment for it being popped by either pop or Multipop 

 Since each object has $1, which is credit, the credit can never go negative 

 Therefore, total amortized cost = O(n), is an upper bound on total actual cost 

Accounting Method: Binary Counter 

 k-bit Binary Counter: A[0..k1] 

                     
 




1

0
2][

k

i

i
iAx

 

INCREMENT(A) 

1.   i  0 

2.   while i < length[A] and A[i] = 1 

3.        do  A[i]  0          ⊳ reset a bit 

4.              i  i + 1 

5.   if  i < length[A] 

6.        then  A[i]  1       ⊳ set a bit 

 

Consider a sequence of n increments.  The worst-case time to execute one increment is 

Q(k).  Therefore, the worst-case time for n increments is n · Q(k) = Q(n k). 

WRONG!  In fact, the worst-case cost for n increments is only Q(n) ≪ Q(n k). 



Ctr A[4] A[3] A[2] A[1] A[0] Cost 

0 0 0 0 0 0 0 

1 0 0 0 0 1 1 

2 0 0 0 1 0 3 

3 0 0 0 1 1 4 

4 0 0 1 0 0 7 

5 0 0 1 0 1 8 

6 0 0 1 1 0 10 

7 0 0 1 1 1 11 

8 0 1 0 0 0 15 

9 0 1 0 0 1 16 

10 0 1 0 1 0 18 

11 0 1 0 1 1 19 

 

Total cost of n operations 

A[0] flipped every op  n 

A[1] flipped every 2 ops  n/2 

A[2] flipped every 4 ops  n/22 

A[3] flipped every 8 ops  n/23 

  …       …       …     …       …  

A[i] flipped every 2i ops  n/2i 

Cost of n increments 
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Thus, the average cost of each increment operation is Q(n)/n = Q(1). 

 

3. Potential Method  

IDEA:  View the bank account as the  potential energy (as in physics) of  the dynamic 

set. 

FRAMEWORK:   

 Start with an initial data structure D0. 

 Operation i transforms Di–1 to Di.   

 The cost of operation i is ci. 

 Define a potential function F : {Di}  R, 

 such that F(D0 ) = 0 and F(Di ) ³ 0 for all i. 

 The amortized cost ĉi with respect to F is defined to be ĉi = ci + F(Di) – F(Di–1).  

 Like the accounting method, but think of the credit as potential stored with the entire 

data structure.  

  Accounting method stores credit with specific objects while potential method 

stores potential in the data structure as a whole. 

  Can release potential to pay for future operations 

  Most flexible of the amortized analysis methods ).  

 ĉi = ci + F(Di) – F(Di–1) 

 If  DFi > 0, then ĉi > ci.  Operation i stores work in the data structure for later use. 

  If  DFi < 0, then ĉi < ci.  The data structure delivers up stored work to help pay for 

operation i. 

The total amortized cost of n operations is 

 






n

i

iii

n

i

i
DDcc

1

1

1

)()(ˆ  

Summing both sides telescopically 

)()( 0

1

DDc
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n

i

i
c

1

 since F(Dn) ³ 0 and F(D0 ) = 0. 

Stack Example 

Define: (Di) = #items in stack Thus, (D0)=0. 

Plug in for operations: 

Push: ĉi = ci + (Di) - (Di-1) 

      = 1 +    j    -   (j-1) 



      = 2 

Pop: ĉi = ci + (Di) - (Di-1) 

      = 1 +  (j-1) -   j 

      = 0 

Multi-pop: ĉi = ci + (Di) - (Di-1) 

      = k’ + (j-k’) -   j  k’=min(|S|,k) 

      = 0 

 

Potential Method: Binary Counter 

Define the potential of the counter after the ith operation by F(Di) = bi, the number of 1’s 

in the counter after the ith operation. 

Note: 

•  F(D0 ) = 0, 

•  F(Di) ³ 0 for all i. 

Example 

0   0   0   1   0    1    0   

0   0   0   1$1 0   1$1 0   

Assume ith INCREMENT resets ti bits (in line 3). 

Actual cost ci = (ti + 1) 

Number of 1’s after ith operation:  bi = bi–1 – ti + 1 

 

The amortized cost of the i th INCREMENT is 
 

ĉi = ci + F(Di) – F(Di–1) 

    = (ti + 1) + (1  ti) 

    = 2 

Therefore, n INCREMENTs cost Q(n) in the worst case 
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Disjoint Set Operations : CO1 and CO2 

Set: 

A set is a collection of distinct elements. The Set can be 

represented, for examples, as S1={1,2,5,10}. 

 

Disjoint Sets: 
The disjoints sets are those do not have any common element. 

For example S1={1,7,8,9} and S2={2,5,10}, then we can say that 
S1 and S2 are two disjoint sets. 

 

Disjoint Set Operations: 
The disjoint set operations are 

1. Union 
2. Find 

 

Disjoint set Union: 

If Si and Sj are tow disjoint sets, then their union Si U Sj 

consists of all the elements x such that x is in Si or Sj. 
 

Example: 

S1={1,7,8,9} S2={2,5,10} 

S1 U S2={1,2,5,7,8,9,10} 

Find: 

Given the element I, find the set containing i. 
 

Example: 
S1={1,7,8,9} 
Then, 

 

S2={2,5,10} 

 

s3={3,4,6} 

Find(4)= S3 Find(5)=S2 Find97)=S1 
 

Set Representation: 

The set will be represented as the tree structure where all 

children will store the address of parent / root node. The root node 

will store null at the place of parent address. In the given set of 

elements any element can be selected as the root node, generally we 

select the first node as the root node. 
 

Example: 
S1={1,7,8,9} S2={2,5,10} s3={3,4,6} 
Then these sets can be represented as 

 

  



  

Disjoint Union: 

To perform disjoint set union between two sets Si and Sj can 

take any one root and make it sub-tree of the other. Consider the 

above example sets S1 and S2 then the union of S1 and S2 can be 

represented as any one of the following. 
 

 

 

 

Find: 

To perform find operation, along with the tree structure we need to
 mai

ntain 

the name of each set. So, we require one more data structure to store 

the set names. The data structure contains two fields. One is the set 

name and the other one is the pointer to root. 
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Union and Find Algorithms: CO2 
In presenting Union and Find algorithms, we ignore the set 

names and  identify sets just by the roots of trees representing them. 

To represent the sets, we use an array of 1 to n elements where n is 

the maximum value among the elements of all sets. The index values 

represent the nodes (elements of set) and the entries represent the 

parent node. For the root value the entry will be ‘-1’. 
 

Example: 

For the following sets the array representation is as shown below. 
 

 

 
i [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 

p -1 -1 -1 3 2 3 1 1 1 2 

 

Algorithm for Union operation: 

To perform union the SimpleUnion(i,j) function takes the 

inputs as the set roots i and j . And make the parent of i as j i.e, make 

the second root as the parent of first root. 
 

Algorithm SimpleUnion(i,j) 

{ 

P[i]:=j; 

} 
 

Algorithm for find operation: 

The SimpleFind(i) algorithm takes the element i and finds the 

root node of i. It starts at I until it reaches a node with parent value -

1. 
Algorithms SimpleFind(i) 

{ 

while( P[i]≥0) 
do i:=P[i]; 

return i; 
} 

 

Analysis of SimpleUnion(i,j) and SimpleFind(i): 

Although the SimpleUnion(i,j) and SimpleFind(i) algorithms 

are easy to state, their performance characteristics are not very 

good. For example, consider the sets 

 

. . . . . . 

 

Then  if  we  want  to  perform following sequence of  operations Union(1,2) , Union(2,3)……. Union(n 1,n) and sequence of Find(1), Find(2)………
 

1 4 2 3 n 



  

The sequence of Union operations results the degenerate tree as below. 

 

Since, the time taken for a Union is constant, the n-1 sequence of 

union can be processed in time O(n). And for the sequence of Find 

operations it will take time 
n 

complexity of O ( i ) = O(n2). 
i1 

We can improve the performance of union and find by avoiding 
the creation of degenerate tree by applying weighting rule for 
Union. 

 

Weighting rule for Union: 

If the number of nodes in the tree with root I is less than the 

number in the tree with the root j, then make ‘j’ the parent of i; 

otherwise make ‘i' the parent of j. 
 

 

 
 

To implement weighting rule we need to know how many nodes are 

there in every tree. To do this we maintain “count” field in the root of 

every tree. If ‘i' is the root then count[i] equals to number of nodes in 

tree with root i. 

Since all nodes other than roots have positive numbers in parent 

(P) field, we can maintain count in P field of the root as negative 

number. 

 
Algorithm WeightedUnion(i,j) 
//Union sets with roots i and j , i≠j using the weighted rule 

// P[i]=-count[i] and p[j]=-count[j] 

n 

n-1 

n-2 

1 



  

{ 

temp:= P[i]+P[j]; 

if (P[i]>P[j]) then 

{// i as fewer nodes P[i]:=j; 
P[j]:=temp; 

} 
else 

{// j has fewer nodes P[j]:=i; 
P[i]:=temp; 

} 
 

} 
 

Collapsing rule for find: 

If j is a node on the path from i to its root and p[i]≠root[i], then set P[j] 
to 

root[i]. Consider the tree created by WeightedUnion() on the 
sequence of 1≤i≤8. Union(1,2), Union(3,4), Union(5,6) and 
Union(7,8) 

 
 

 

 

 

 



  

Now process the following eight find 

operations Find(8), 

Find(8)………………………Find(8) 

If SimpleFind() is used each Find(8) requires going up three parent 

link fields for a total of 24 moves . 

When Collapsing find is used the first Find(8) requires going up three 

links and resetting three links. Each of remaining seven finds require 

going up only one link field. Then the total cost is now only 13 

moves.( 3 going up + 3 resets + 7 remaining finds). 
 

Algorithm CollapsingFind(i) 
// Find the root of the tree containing element i 

// use the collapsing rule to collapse all nodes from i to root. 
{ 

r:=i; 

while(P[r]>0) do 

r:=P[r]; //Find root 
while(i≠r) 
{ 

//reset the parent node from element i 
to the root s:=P[i]; 
P[i]:=r; 
i:=s; 

} 

} 
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Efficient non-recursive binary tree traversal Algorithms: 

CO2 

 
Search means finding a path or traversal between a start node and one of a set of 

goal nodes. Search is a study of states and their transitions. 

 

Search involves visiting nodes in a graph in a systematic manner, and may or may 

not result into a visit to all nodes. When the search necessarily involved the 

examination of every vertex in the tree, it is called the traversal. 

 

  



  

Techniques for Traversal of a Binary Tree: 

 

A binary tree is a finite (possibly empty) collection of elements. When the binary tree 

is not empty, it has a root element and remaining elements (if any) are partitioned 

into two binary trees, which are called the left and right subtrees. 

 

There are three common ways to traverse a binary tree: 
 

1. Preorder 

2. Inorder 

3. postorder 

 

In all the three traversal methods, the left subtree of a node is traversed before the 

right subtree. The difference among the three orders comes from the difference in the 

time at which a node is visited. 

 

Inorder Traversal: 
 

In the case of inorder traversal, the root of each subtree is visited after its left subtree 

has been traversed but before the traversal of its right subtree begins. The steps for 

traversing a binary tree in inorder traversal are: 

 
1. Visit the left subtree, using inorder. 
2. Visit the root. 

3. Visit the right subtree, using inorder. 

 

The algorithm for preorder traversal is as follows: 

 
treenode = record 
{ 

Type  data; //Type is the data type of data. 

Treenode *lchild; treenode *rchild; 
} 



  

 

algorithm inorder (t) 
// t is a binary tree. Each node of t has three fields: lchild, data, and rchild. 

{ 

if t  0 then 

{ 

inorder (t  lchild); 

visit (t); 
inorder (t  rchild); 

} 

} 

 

Preorder Traversal: 

 

In a preorder traversal, each node is visited before its left and right subtrees are 

traversed. Preorder search is also called backtracking. The steps for traversing a 

binary tree in preorder traversal are: 
 

1. Visit the root. 

2. Visit the left subtree, using preorder. 

3. Visit the right subtree, using preorder. 

 

The algorithm for preorder traversal is as follows: 

 
Algorithm Preorder (t) 

// t is a binary tree. Each node of t has three fields; lchild, data, and rchild. 

{ 

if t  0 then 
{ 

visit (t); 

Preorder (t  lchild); 

Preorder (t  rchild); 
} 

} 

 

 

Postorder Traversal: 

 

In a postorder traversal, each root is visited after its left and right subtrees have been 

traversed. The steps for traversing a binary tree in postorder traversal are: 
 

1. Visit the left subtree, using postorder. 

2. Visit the right subtree, using postorder 

3. Visit the root. 

 

The algorithm for preorder traversal is as follows: 

 
Algorithm Postorder (t) 

// t is a binary tree. Each node of t has three fields : lchild, data, and rchild. 

{ 

if t  0 then 
{ 

Postorder (t  lchild); 

Postorder (t  rchild); 

visit(t); 
} 

} 



  

 

Examples for binary tree traversal/search technique: 

 

Example 1: 

 

Traverse the following binary tree in pre, post and in-order. 

 
 

Bi n a ry T re e P re, P o st a n d In- o rd er T ra v ers in g 

 

Example 2: 

 

Traverse the following binary tree in pre, post, inorder and level order. 
 

Bi n a ry T re e P re, P o st , In o rd er a n d l ev e l o rd er T ra v ers in g 

 
Example 3: 

 

Traverse the following binary tree in pre, post, inorder and level order. 
 

Bi n a ry T re e P re, P o st , In o rd er a n d lev e l o rd er T ra v ers in g 

   

   

  

 
 

Preorderi ng of the vertices: 

A, B, D, C, E, G,  F, H, I. 

 

Post ord eri ng of t he vertices: 

D, B, G, E, H, I,  F, C, A. 

 

Inord eri ng of t he 

vertices: D, B, A, E, G,  

C, H, F, I 

H I  

   

  

 • P reo rde r t ra v e rs a l y ie lds: 

A, B, D, C , E, G , F , H, I 

 

• Posto rde r t ra v e rs a l y ie lds: 
D, B, G , E, H, I, F , C , A 

 

• Ino rde r t ra v e rs a l y ie lds: 
D, B, A, E, G , C , H, F , I 

 
• Le v e l o rde r t ra v e rs a l y ie lds: 

A, B, C , D, E, F , G , H, I 

 

   

R Y B H 

  

 
• P reo rde r t ra v e rs a l y ie lds: 

P , F , B, H, G , S, R, Y, T, W , Z 

 
• Posto rde r t ra v e rs a l y ie lds: 

B, G , H, F , R, W , T, Z, Y, S, P 

 
• Ino rde r t ra v e rs a l y ie lds: 

B, F , G , H, P , R, S, T, W , Y, Z 

 

• Le v e l o rde r t ra v e rs a l y ie lds: 
P , F , S, B, H, R, Y, G , T, Z, W 



  

 

Example 4: 
 

Traverse the following binary tree in pre, post, inorder and level order. 
 

Bi n a ry T re e P re, P o st , In o rd er a n d l ev e l o rd er T ra v ers in g 

 

Example 5: 
 

Traverse the following binary tree in pre, post, inorder and level order. 
 

Bi n a ry T re e P re, P o st , In o rd er a n d l ev e l ord er T ra v ers in g 

 

Non Recursive Binary Tree Traversal Algorithms: 

 

At first glance, it appears we would always want to use the flat traversal functions 

since the use less stack space. But the flat versions are not necessarily better. For 

instance, some overhead is associated with the use of an explicit stack, which may 

negate the savings we gain from storing only node pointers. Use of the implicit 

function call stack may actually be faster due to special machine instructions that can 

be used. 

 

Inorder Traversal: 

 
Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 

1. Proceed down the left most path rooted at vertex, pushing each vertex onto 
the stack and stop when there is no left son of vertex. 

 

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with 

right son exists, then set right son of vertex as current vertex and return to 

step one. 

5 11 4 

   

  

 
• P reo rde r t ra v e rs a l y ie lds: 

2, 7 , 2 , 6 , 5 , 11 , 5 , 9 , 4 

 
• Posto rde r t ra v a rs a l y ie lds: 

2, 5 , 11 , 6 , 7 , 4 , 9 , 5 , 2 
 

• Ino rde r t ra v a rs a l y ie lds: 
2, 7 , 5 , 6 , 11 , 2 , 5 , 4 , 9 

 

• Le v e l o rde r t ra v e rs a l y ie lds: 
2, 7 , 5 , 2 , 6 , 9 , 5 , 11 , 4 

   

  

  

  

 
• Preo rde r t rav e rs al y ie lds: 

A, B, D, G , K, H, L, M , C , E 
 

• Posto rde r t rav ars al y ie lds: 
K, G , L, M , H, D, B, E, C , A 

 

• Ino rde r t rav ars al y ie lds: 

K, G , D, L, H, M , B,  A, E, C 

 
• Le v e l o rde r t rav e rs al y ie lds: 

A, B, C , D, E, G , H,  K, L, M 



  

 

The algorithm for inorder Non Recursive traversal is as follows: 

Algorithm inorder() 

{ 

stack[1] = 0 

vertex = root 
top: while(vertex ≠ 0) 

{ 

push the vertex into the stack 

vertex = leftson(vertex) 
} 

 

pop the element from the stack and make it as vertex 
 

while(vertex ≠ 0) 
{ 

print the vertex node 

if(rightson(vertex) ≠ 0) 
{ 

vertex = rightson(vertex) 

goto top 
} 

pop the element from the stack and made it as vertex 

} 

} 

 

 

Preorder Traversal: 

 

Initially push zero onto stack and then set root as vertex. Then repeat the following 

steps until the stack is empty: 

 

1. Proceed down the left most path by pushing the right son of vertex onto stack, 

if any and process each vertex. The traversing ends after a vertex with no left 

child exists. 

 

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit. 

 

The algorithm for preorder Non Recursive traversal is as follows: 

 
Algorithm preorder( ) 
{ 

stack[1]: = 0 

vertex := root. 

while(vertex ≠ 0) 
{ 

print vertex node 
if(rightson(vertex) ≠ 0) 

push the right son of vertex into the stack. 

if(leftson(vertex) ≠ 0) 
vertex := leftson(vertex) 

else 

 

} 

} 

 

pop the element from the stack and made it as vertex 



  

 

Postorder Traversal: 

 
Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 

1. Proceed down the left most path rooted at vertex. At each vertex of path push 

vertex on to stack and if vertex has a right son push –(right son of vertex) 

onto stack. 

 

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If 
a negative node is popped, then ignore the sign and return to step one. 

 

The algorithm for postorder Non Recursive traversal is as follows: 
 

Algorithm postorder( ) 
{ 

stack[1] := 0 

vertex := root 

 

top: while(vertex ≠ 0) 
{ 

push vertex onto stack 
if(rightson(vertex) ≠ 0) 
push -leftson(vertex) onto stack 

vertex := leftson(vertex) 
} 

pop from stack and make it as vertex 

while(vertex > 0) 
{ 

print the vertex node 

pop from stack and make it as vertex 

} 

if(vertex < 0) 
{ 

vertex := -(vertex) 
goto top 

} 

} 

 

 

Example 1: 

 

Traverse the following binary tree in pre, post and inorder using non-recursive 
traversing algorithm. 

 

Bi n a ry T re e P re, P o st a n d In o rd er T ra v ers in g 

   

  

  

  

 
 

• Preo rde r t rav e rs al y ie lds: 

A, B, D, G , K, H, L, M , C , E 
 

• Posto rde r t rav ars al y ie lds: 
K, G , L, M , H, D, B, E, C , A 

 
• Ino rde r t rav ars al y ie lds: 

K, G , D, L, H, M , B,  A, E, C 



  

 

Inorder Traversal: 

 
Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 

1. Proceed down the left most path rooted at vertex, pushing each vertex onto 

the stack and stop when there is no left son of vertex. 

 

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with 

right son exists, then set right son of vertex as current vertex and return to 

step one. 

 
Current 

vertex 
Stack Processed nodes Remarks 

A 0  PUSH 0 

 0 A B D G K  PUSH the left most path of A 

K 0 A B D G K POP K 

G 0 A B D K G POP G since K has no right son 

D 0 A B K G D POP D since G has no right son 

H 0 A B K G D 
Make the right son of D as 

vertex 

H 0 A B H L K G D PUSH the leftmost path of H 

L 0 A B H K G D L POP L 

H 0 A B K G D L H POP H since L has no right son 

M 0 A B K G D L H 
Make the right son of H as 

vertex 

 0 A B M K G D L H PUSH the left most path of M 

M 0 A B K G D L H M POP M 

B 0 A K G D L H M B POP B since M has no right son 

A 0 K G D L H M B A 
Make the right son of A as 

vertex 

C 0 C E K G D L H M B A PUSH the left most path of C 

E 0 C K G D L H M B A E POP E 

C 0 K G D L H M B A E C Stop since stack is empty 

 

 

Postorder Traversal: 

 

Initially push zero onto stack and then set root as vertex. Then repeat the following 

steps until the stack is empty: 

 

1. Proceed down the left most path rooted at vertex. At each vertex of path push 

vertex on to stack and if vertex has a right son push -(right son of vertex)  

onto stack. 

 

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If 

a negative node is popped, then ignore the sign and return to step one. 



  

 
Current 

vertex 
Stack Processed nodes Remarks 

A 0  PUSH 0 

 
0 A -C B D -H G K 

 PUSH the left most path of A with 

a -ve for right sons 
 0 A -C B D -H K G POP all +ve nodes K and G 

H 0 A -C B D K G Pop H 

 
0 A -C B D H -M L K G 

PUSH the left most path of H with 
a -ve for right sons 

 0 A -C B D H -M K G L POP all +ve nodes L 

M 0 A -C B D H K G L Pop M 

 
0 A -C B D H M K G L 

PUSH the left most path of M with 

a -ve for right sons 
 0 A -C K G L M H D B POP all +ve nodes M, H, D and B 

C 0 A K G L M H D B Pop C 

 
0 A C E K G L M H D B 

PUSH the left most path of C with 

a -ve for right sons 

 0 K G L M H D B E C A POP all +ve nodes E, C and A 

 0  Stop since stack is empty 

 

 

Preorder Traversal: 

 

Initially push zero onto stack and then set root as vertex. Then repeat the following 

steps until the stack is empty: 

 

1. Proceed down the left most path by pushing the right son of vertex onto stack, 

if any and process each vertex. The traversing ends after a vertex with no left 

child exists. 

 

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit. 

 
Current 

vertex 
Stack Processed nodes Remarks 

A 0  PUSH 0 

  

0 C H 
 

A B D G K 

PUSH the right son of each vertex onto 

stack and process each vertex in the left 
most path 

H 0 C A B D G K POP H 

  

0 C M 

 

A B D G K H L 

PUSH the right son of each vertex onto 

stack and process each vertex in the left 
most path 

M 0 C A B D G K H L POP M 

  

0 C 
 

A B D G K H L M 

PUSH the right son of each vertex onto 

stack and process each vertex in the left 
most path; M has no left path 

C 0 A B D G K H L M Pop C 

  
0 

 
A B D G K H L M C E 

PUSH the right son of each vertex onto 

stack and process each vertex in the left 

most path; C has no right son on the left 
most path 

 0 A B D G K H L M C E Stop since stack is empty 



  

 

Example 2: 

 
Traverse the following binary tree in pre, post and inorder using non-recursive 
traversing algorithm. 

 

Bi n a ry T re e P re, P o st a n d In o rd er T ra v ers in g 

 

Inorder Traversal: 

 

Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 
1. Proceed down the left most path rooted at vertex, pushing each vertex onto 

the stack and stop when there is no left son of vertex. 

 

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with 

right son exists, then set right son of vertex as current vertex and return to 

step one. 

 
Current 

vertex 
Stack Processed nodes Remarks 

2 0   

 0 2 7 2   

2 0 2 7 2  

7 0 2 2 7  

6 0 2 6 5 2 7  

5 0 2 6 2 7 5  

11 0 2 2 7 5 6 11  

5 0 5 2 7 5 6 11 2  

9 0 9 4 2 7 5 6 11 2 5  

4 0 9 2 7 5 6 11 2 5 4  

 0 2 7 5 6 11 2 5 4 9 Stop since stack is empty 

 

Postorder Traversal: 

 

Initially push zero onto stack and then set root as vertex. Then repeat the following 

steps until the stack is empty: 

 

1. Proceed down the left most path rooted at vertex. At each vertex of path push 

vertex on to stack and if vertex has a right son push –(right son of vertex) 

onto stack. 

5 11 4 

   

  

 
 

• Preo rde r t rav e rs al y ie lds: 
2, 7 , 2 , 6 , 5 , 11 , 5 , 9 , 4 

 

• Posto rde r t rav ars al y ie lds: 

2, 5 , 11 , 6 , 7 , 4 , 9 , 5 , 2 

 

• Ino rde r t rav ars al y ie lds: 
2, 7 , 5 , 6 , 11 , 2 , 5 , 4 , 9 



  

 

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If 
a negative node is popped, then ignore the sign and return to step one. 

 

Current 
vertex 

Stack Processed nodes Remarks 

2 0   

 0 2 -5 7 -6 2   

2 0 2 -5 7 -6 2  

6 0 2 -5 7 2  

 0 2 -5 7 6 -11 5 2  

5 0 2 -5 7 6 -11 2 5  

11 0 2 -5 7 6 11 2 5  

 0 2 -5 2 5 11 6 7  

5 0 2 5 -9 2 5 11 6 7  

9 0 2 5 9 4 2 5 11 6 7  

 0 2 5 11 6 7 4 9 5 2 Stop since stack is empty 

 

Preorder Traversal: 

 

Initially push zero onto stack and then set root as vertex. Then repeat the following 

steps until the stack is empty: 

 

1. Proceed down the left most path by pushing the right son of vertex onto stack, 

if any and process each vertex. The traversing ends after a vertex with no left 

child exists. 

 

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit. 

 
Current 

vertex 
Stack Processed nodes Remarks 

2 0   

 0 5 6 2 7 2  

6 0 5 11 2 7 2 6 5  

11 0 5 2 7 2 6 5  

 0 5 2 7 2 6 5 11  

5 0 9 2 7 2 6 5 11  

9 0 2 7 2 6 5 11 5  

 0 2 7 2 6 5 11 5 9 4 Stop since stack is empty 
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Articulation Points and Biconnected Components: CO2 
 

Let G = (V, E) be a connected undirected graph. Consider the following definitions: 

 

Articulation Point (or Cut Vertex): An articulation point in a connected graph is a 

vertex (together with the removal of any incident edges) that, if deleted, would break 

the graph into two or more pieces.. 

 

Bridge: Is an edge whose removal results in a disconnected graph. 

 

Biconnected: A graph is biconnected if it contains no articulation points. In a 

biconnected graph, two distinct paths connect each pair of vertices. A graph that is 

not biconnected divides into biconnected components. This is illustrated in the 

following figure: 

 
 

 
Articulation Points and Bridges 

 

 

Biconnected graphs and articulation points are of great interest in the design of 

network algorithms, because these are the “critical" points, whose failure will result in 

the network becoming disconnected. 

 
Let us consider the typical case of vertex v, where v is not a leaf and v is not the root. 
Let w1, w2, . . . . . . . wk be the children of v. For each child there is a subtree of the 
DFS tree rooted at this child. If for some child, there is no back edge going to a  
proper ancestor of v, then if we remove v, this subtree becomes disconnected from 
the rest of the graph, and hence v is an articulation point. 

 

On the other hand, if every one of the subtree rooted at the children of v have back 

edges to proper ancestors of v, then if v is removed, the graph remains connected 

(the back edges hold everything together). This leads to the following: 

 

Observation 1: An internal vertex v of the DFS tree (other than the root) is 

 

 
 

Biconnecte
d 

Component
s 

 

 

 

  



  

an articulation point if and only if there is a subtree rooted at a child of v such 
that there is no back edge from any vertex in this subtree to a proper ancestor 
of v. 

 
Observation 2: A leaf of the DFS tree is never an articulation point, since a 
leaf will not have any subtrees in the DFS tree. 

 

Thus, after deletion of a leaf from a tree, the rest of the tree remains 

connected, thus even ignoring the back edges, the graph is connected after  

the deletion of a leaf from the DFS tree. 

 

Observation 3: The root of the DFS is an articulation point if and only if it has 
two or more children. If the root has only a single child, then (as in the case of 
leaves) its removal does not disconnect the DFS tree, and hence cannot 
disconnect the graph in general. 

 

Articulation Points by Depth First Search: 

 
Determining the articulation turns out to be a simple extension of depth first search. 
Consider a depth first spanning tree for this graph. 

 

 
Observations 1, 2, and 3 provide us with a structural characterization of which 

vertices in the DFS tree are articulation points. 

 

Deleting node E does not disconnect the graph because G and D both have dotted 

links (back edges) that point above E, giving alternate paths from them to F. On the 

other hand, deleting G does disconnect the graph because there are no such alternate 

paths from L or H to E (G’s parent). 

 

A vertex ‘x’ is not an articulation point if every child ‘y’ has some node lower in the 

tree connect (via a dotted link) to a node higher in the tree than ‘x’, thus providing an 

alternate connection from ‘x’ to ‘y’. This rule will not work for the root node since 

there are no nodes higher in the tree. The root is an articulation point if it has two or 

more children. 

 

Depth First Spanning Tree for the above graph is: 

 

 
 

 
 

 
 

 
 

 

  

   

 

 

 

   



  

 

 
 
 

By using the above observations the articulation points of this graph are: 

A  : because it connects B to the rest of the graph. 

H  : because it connects I to the rest of the graph. 

J  : because it connects K to the rest of the graph. 

G  : because the graph would fall into three pieces if G is deleted. 

Biconnected components are: {A, C, G, D, E, F}, {G, J, L, M}, B, H, I and K 

 

This observation leads to a simple rule to identify articulation points. For each is 

define L (u) as follows: 

 

L (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  (u, w) 

is a back edge}}. 

 

L (u) is the lowest depth first number that can be reached from ‘u’ using a path of 

descendents followed by at most one back edge. It follows that, If ‘u’ is not the root 

then ‘u’ is an articulation point iff ‘u’ has a child ‘w’ such that: 

 

L (w) ≥ DFN (u) 

 

6.6.2. Algorithm for finding the Articulation points: 

 

Pseudocode to compute DFN and L. 
 

Algorithm Art (u, v) 

// u is a start vertex for depth first search. V is its parent if any in the depth first 

// spanning tree. It is assumed that the global array dfn is initialized to zero and that // the 

global variable num is initialized to 1. n is the number of vertices in G. 
{ 

dfn [u] := num; L [u] := num; num := num + 1; 

for each vertex w adjacent from u do 
{ 

if (dfn [w] = 0) then 
{ 

Art (w, u); // w is unvisited. 

L [u] := min (L [u], L [w]); 
} 

else if (w  v) then L [u] := min (L [u], dfn [w]); 

} 

} 

 

 

6.6.1. Algorithm for finding the Biconnected Components: 
 

Algorithm BiComp (u, v) 

// u is a start vertex for depth first search. V is its parent if any in the depth first 
// spanning tree. It is assumed that the global array dfn is initially zero and that the 

// global variable num is initialized to 1. n is the number of vertices in G. 
{ 

dfn [u] := num; L [u] := num; num := num + 1; 

for each vertex w adjacent from u do 
{ 

if ((v  w) and (dfn [w] < dfn [u])) then 



  

8 6 

1 1 5 7 

 6 2  

3 3 8 1 0 

1 0 9 5 

add (u, w) to the top of a stack s; 
if (dfn [w] = 0) then 

{ 

if (L [w] > dfn [u]) then 
{ 

write (“New bicomponent”); 
repeat 
{ 

Delete an edge from the top of stack s; 

Let this edge be (x, y); 
Write (x, y); 

} until (((x, y) = (u, w)) or ((x, y) = (w, u))); 

} 
 

BiComp (w, u); // w is unvisited. 
L [u] := min (L [u], L [w]); 

} 

else if (w  v) then L [u] : = min (L [u], dfn [w]); 

} 

} 

 

 

6.7.1. Example: 

 

For the following graph identify the articulation points and Biconnected components: 
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Grap h 

 

 

 

 

Dept h Fi rst Sp an ni ng Tree 

 
To identify the articulation points, we use: 

 

L (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  w is a vertex 

to which there is back edge from u}} 

 
 

L (1) = min {DFN (1), min {L (4)}} = min {1, L (4)} = min {1, 1} = 1 

L (4) = min {DFN (4), min {L (3)}} = min {2, L (3)} = min {2, 1} = 1 

L (3) = min {DFN (3), min {L (10), L (9), L (2)}} = 
= min {3, min {L (10), L (9), L (2)}} = min {3, min {4, 5, 1}} = 1 

 

L (10) = min {DFN (10)} = 4 

 

L (9) = min {DFN (9)} = 5 
 

1 1 

2 4 

 
3 3 

 

1  0 5 9 6   2 

 

7   5 

8 6 7 9 

8 1 0 



  

L (2) = min {DFN (2), min {L (5)}, min {DFN (1)}} 
= min {6, min {L (5)}, 1} = min {6, 6, 1} = 1 

L (5) = min {DFN (5), min {L (6), L (7)}} = min {7, 8, 6} = 6 

L (6) = min {DFN (6)} = 8 

L (7) = min {DFN (7), min {L (8}, min {DFN (2)}} 

= min {9, L (8) , 6} = min {9, 6, 6} = 6 

L (8) = min {DFN (8), min {DFN (5), DFN (2)}} 
 

= min {10, min (7, 6)} = min {10, 6} = 6 

 

Therefore, L (1: 10) = (1, 1, 1, 1, 6, 8, 6, 6, 5, 4) 

 

Finding the Articulation Points: 

 

Vertex 1: Vertex 1 is not an articulation point. It is a root node. Root is an articulation 
point if it has two or more child nodes. 

 
Vertex 2: is an articulation point as child 5 has L (5) = 6 and DFN (2) = 6, 

So, the condition L (5) = DFN (2) is true. 

 

Vertex 3: is an articulation point as child 10 has L (10) = 4 and DFN (3) = 3, 

So, the condition L (10) > DFN (3) is true. 

 

Vertex 4: is not an articulation point as child 3 has L (3) = 1 and DFN (4) = 2, 

So, the condition L (3) > DFN (4) is false. 

 

Vertex 5: is an articulation point as child 6 has L (6) = 8, and DFN (5) = 7, 
So, the condition L (6) > DFN (5) is true. 

 

Vertex 7: is not an articulation point as child 8 has L (8) = 6, and DFN (7) = 9, 

So, the condition L (8) > DFN (7) is false. 

 

Vertex 6, Vertex 8, Vertex 9 and Vertex 10 are leaf nodes. 

 

Therefore, the articulation points are {2, 3, 5}. 

 

Example: 

 

For the following graph identify the articulation points and Biconnected components: 
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G ra p h 

 
 
 

 
D F S s p a n ni n g T re e 

 
 

  

  

 

 
 

  

 
 

  

 

 



  

 

V ert e x 
 

1 
  2          

2   1   3       
             

3   2   5   6   4 
             

4   3   7   8    

5 
   

3 

 

 

        

             

6   3          
             

7   4   8       

             

8   4   7       
  

Adj ac e nc y List 
 

 

L (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  w is a vertex 

to which there is back edge from u}} 

 

L (1) = min {DFN (1), min {L (2)}} = min {1, L (2)} = min {1, 2} = 1 

L (2) = min {DFN (2), min {L (3)}} = min {2, L (3)} = min {2, 3} = 2 

L (3) = min {DFN (3), min {L (4), L (5), L (6)}} = min {3, min {6, 4, 5}} = 3 

L (4) = min {DFN (4), min {L (7)} = min {6, L (7)} = min {6, 6} = 6 

L (5) = min {DFN (5)} = 4 

L (6) = min {DFN (6)} = 5 

L (7) = min {DFN (7), min {L (8)}} = min {7, 6} = 6 

L (8) = min {DFN (8), min {DFN (4)}} = min {8, 6} = 6 

 
Therefore, L (1: 8) = {1, 2, 3, 6, 4, 5, 6, 6} 

 

Finding the Articulation Points: 

Check for the condition if L (w) > DFN (u) is true, where w is any child of u. 

Vertex 1: Vertex 1 is not an articulation point. 

It is a root node. Root is an articulation point if it has two or more child 

nodes. 
 

Vertex 2: is an articulation point as L (3) = 3 and DFN (2) = 2. 

So, the condition is true 

 
Vertex 3: is an articulation Point as: 

I. L (5) = 4 and DFN (3) = 3 

II. L (6) = 5 and DFN (3) = 3 and 

III. L (4) = 6 and DFN (3) = 3 

So, the condition true in above cases 



  

   

 

Vertex 4: is an articulation point as L (7) = 6 and DFN (4) = 6. 
So, the condition is true 

 

Vertex 7: is not an articulation point as L (8) = 6 and DFN (7) = 7. 

So, the condition is False 

 

Vertex 5, Vertex 6 and Vertex 8 are leaf nodes. 

Therefore, the articulation points are {2, 3, 4}. 

 

Example: 

 

For the following graph identify the articulation points and Biconnected components: 
 

1 1 

 
2 2 

 

3  3 

 

4 4 

 

5   5 7 8 

 
Graph 6  6 Depth First 

Spanning Tree 
 

7  8 

 

 

DFN (1: 8) = {1, 2, 3, 4, 5, 6, 8, 7} 

 
V ert e x 

 
1 

 
2 

 
 

  

1 

   

3 

            

  
 

                 

3   2   4   7          
                   

4   1   3   5   6   7   8 
                   

5   1   4   6          

                   

6   4   5   8          
                   

7   3   4             

8 

 
 

  
4 

   
6 

            

 
Adj ac e nc y List 

 

 

L (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  w is a vertex 

to which there is back edge from u}} 
 

L (1) = min {DFN (1), min {L (2)}} 

= min {1, L (2)} = 1 

 

L (2) = min {DFN (2), min {L (3)}} = min {2, L (3)} = min{2, 1}= 11 

 

 

 

  

 

 

 



  

 

L (3) = min {DFN (3), min {L (4)}} = min {3, L (4)} = min {3, L (4)} 
= min {3, 1} = 1 

 

L (4) = min {DFN (4), min {L (5), L (7)}, min {DFN (1)}} 
= min {4, min {L (5), L (7)}, 1} = min {4, min {1, 3}, 1} 

= min {4, 1, 1} = 1 

 

L (5) = min {DFN (5), min {L (6)}, min {DFN (1)}} = min {5, L (6), 1} 

= min {5, 4, 1} = 1 

 

L (6) = min {DFN (6), min {L (8)}, min {DFN (4)}} = min(6, L (8), 4} 

= min(6, 4, 4} = 4 

 

L (7)   = min {DFN (7), min {DFN (3)}} = min {8, 3} = 3 

 

L (8)   = min {DFN (8), min {DFN (4)}} = min {7, 4} = 4 

 

Therefore, L (1: 8) = {1, 1, 1, 1, 1, 4, 3, 4} 

 

Finding the Articulation Points: 

Check for the condition if L (w) > DFN (u) is true, where w is any child of u. 

Vertex 1: is not an articulation point. 

It is a root node. Root is an articulation point if it has two or more child 
nodes. 

 

Vertex 2: is not an articulation point. As L (3) = 1 and DFN (2) = 2. 

So, the condition is False. 

 

Vertex 3: is not an articulation Point as L (4) = 1 and DFN (3) = 3. 

So, the condition is False. 

 
Vertex 4: is not an articulation Point as: 

L (3) = 1 and DFN (2) = 2 and 

L (7) = 3 and DFN (4) = 4 

So, the condition fails in both cases. 

 

Vertex 5: is not an Articulation Point as L (6) = 4 and DFN (5) = 6. 

So, the condition is False 

 

Vertex 6: is not an Articulation Point as L (8) = 4 and DFN (6) = 7. 

So, the condition is False 

Vertex 7: is a leaf node. 

Vertex 8: is a leaf node. 

 

So they are no articulation points. 

 

 

 

 

 

 

 

 

 

 



  

CVR COLLEGE OF ENGINEERING 
An UGC Autonomous Institution - Affiliated to JNTUH 

Handout – 6 

Unit - II 

Year and Semester: IIyr &II Sem 

A    Subject: Design and Analysis of Algorithms 

Branch: CSE 

Faculty: Dr. N. Subhash Chandra, Professor of CSE 

                                                                                

AND/OR GRAPH: CO2 
 

And/or graph is a specialization of hypergraph which connects nodes by sets of arcs 
rather than by a single arcs. A hypergraph is defined as follows: 

 

A hypergraph consists of: 

N, a set of nodes, 

H, a set of hyperarcs defined by ordered pairs, in which the first implement of 

the pair is a node of N and the second implement is the subset of N. 

 

An ordinary graph is a special case of hypergraph in which all the sets of descendent 

nodes have a cardinality of 1. 

Hyperarcs also known as K-connectors, where K is the cardinality of the set of 

decendent nodes. If K = 1, the descendent may be thought of as an OR nodes. If K > 

1, the elements of the set of decendents may be thought of as AND nodes. In this 

case the connector is drawn with individual edges from the parent node to each of the 

decendent nodes; these individual edges are then joined with a curved link. 

 

Example 1: 

 

Draw an And/Or graph for the following prepositions: 
 

1. A 

2. B 

3. C 
4. A ^ B -> D 
5. A ^ C -> E 

6. B ^ D -> F 

7. F -> G 

8. A ^ E -> H 

 

 

 

 

 

 

 

 

 

 

C A B 
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Divide and Conquer General Method: CO3 
 

Divide and conquer is a design strategy which is well known to breaking 

down efficiency barriers. When the method applies, it often leads to a large 

improvement in time complexity. For example, from O (n2) to O (n log n) to 

sort the elements. 

 

Divide and conquer strategy is as follows: divide the problem instance into 

two or more smaller instances of the same problem, solve the smaller 

instances recursively, and assemble the solutions to form a solution of the 

original instance. The recursion stops when an instance is reached which is 

too small to divide. When dividing the instance, one can either use whatever 

division comes most easily to hand or invest time in making the division 

carefully so that the assembly is simplified. 

 

Divide and conquer algorithm consists of two parts: 

 

Divide : Divide the problem into a number of sub problems. The sub 

problems are solved recursively. 
Conquer  : The solution to the original problem is then formed from the 

solutions to the sub problems (patching together the 
answers). 

 

Traditionally, routines in which the text contains at least two recursive calls 

are called divide and conquer algorithms, while routines whose text contains 

only one recursive call are not. Divide–and–conquer is a very powerful use 

of recursion. 

 

Control Abstraction of Divide and Conquer 

 

A control abstraction is a procedure whose flow of control is clear but whose 

primary operations are specified by other procedures whose precise 

meanings are left undefined. The control abstraction for divide and conquer 

technique is DANDC(P), where P is the problem to be solved. 
 

DANDC (P) 

{ 

if SMALL (P) then 

return S (p); else 
{ 

divide p into smaller instances p1, p2, …. 
Pk, k  1; apply DANDC to each of these 
sub problems; 
return (COMBINE (DANDC (p1) , DANDC (p2),…., DANDC (pk)); 

} 

} 
 

SMALL (P) is a Boolean valued function which determines whether the input 

size is small enough so that the answer can be computed without splitting. If 

this is so function ‘S’ is invoked otherwise, the problem ‘p’ into smaller sub 

  



 



problems. These sub problems p1, p2, . . . , pk are solved by recursive 

application of DANDC. 

If the sizes of the two sub problems are approximately equal then the 
computing time of DANDC is: 

 

  g (n) 
T  (n) =  

2 T(n/2) f (n) 

n small 

otherwise 
 

Where, T (n) is the time for DANDC on ‘n’ inputs 

g (n) is the time to complete the answer directly for small 

inputs and f (n) is the time for Divide and Combine 

 

Binary Search 

 
If we have ‘n’ records which have been ordered by keys so that x1 < x2 < … < 
xn . When we are given a element ‘x’, binary search is used to find the 
corresponding element from the list. In case ‘x’ is present, we have to 
determine a value ‘j’ such that a[j] = x (successful search). If ‘x’ is not in the 
list then j is to set to zero (un successful search). 

 

In Binary search we jump into the middle of the file, where we find key a[mid], 

and compare  ‘x’ with  a[mid]. If x  = a[mid]  then the desired record has been  

found.    If x < a[mid] then ‘x’ must be in that portion of the file that precedes 

a[mid], if there at all. Similarly, if a[mid] > x, then further search is only 

necessary in that past of the file which follows a[mid]. If we use recursive 

procedure of finding the middle key a[mid] of the un-searched portion of a file, 

then every un-successful comparison of ‘x’ with a[mid] will eliminate roughly 

half the un-searched portion from consideration. 

 
Since the array size is roughly halved often each comparison between ‘x’  and  

a[mid], and since an array of length ‘n’ can be halved only about log2n times 

before reaching a trivial length, the worst case complexity of Binary search is 
about log2n 

BINSRCH (a, n, x) 
// array a(1 : n) of elements in increasing order, n  0, 

// determine whether ‘x’ is present, and if so, set j such that x = a(j) 

// else return j 

 

{ 

low :=1 ; high 

:=n ; while (low 

< high) do 
{ 

mid :=|(low + high)/2| 

if (x < a [mid]) then high:=mid – 

1; else if (x > a [mid]) then low:= 

mid + 1 
else return mid; 

} 

return 0; 

} 
 

low and high are integer variables such that each time through the loop either 

‘x’ is found or low is increased by at least one or high is decreased by at least 

one. Thus we have two sequences of integers approaching each other and 

eventually low will become greater than high causing termination in a finite 

number of steps if ‘x’ is not present. 
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Merge Sort: CO3 
 

Merge sort algorithm is a classic example of divide and conquer. To sort an 

array, recursively, sort its left and right halves separately and then merge 

them. The time complexity of merge mort in the best case, worst case and 

average case is O(n log n) and the number of comparisons used is nearly 

optimal. 

 

This strategy is so simple, and so efficient but the problem here is that there 

seems to be no easy way to merge two adjacent sorted arrays together in place 

(The result must be build up in a separate array). 

 

The fundamental operation in this algorithm is merging two sorted lists. 

Because the lists are sorted, this can be done in one pass through the input, if 

the output is put in a third list. 

 

The basic merging algorithm takes two input arrays ‘a’ and ’b’, an output array 

‘c’, and three counters, a ptr, b ptr and c ptr, which are initially set to the 

beginning of their respective arrays. The smaller of a[a ptr] and b[b ptr] is 

copied to the next entry in ‘c’, and the appropriate counters are advanced. 

When either input list is exhausted, the remainder of the other list is copied to 

‘c’. 
 

To illustrate how merge process works. For example, let us consider the array 

‘a’ containing 1, 13, 24, 26 and ‘b’ containing 2, 15, 27, 38. First a comparison 

is done between 1 and 2. 1 is copied to ‘c’. Increment a ptr and c ptr. 

 
 

 

and then 2 and 13 are compared. 2 is added to ‘c’. Increment b ptr and c ptr. 
 

 
 

 
 

1 2 3 4 

1 13 24 26 

h 

ptr 

   

 

5 6 7 8 

2 15 27 28 

j 

ptr 

   

 

1 2 3 4 5 6 7 8 

1        

i 

ptr 

       

 

1 2 3 4 

1 13 24 26 

 h 

ptr 

  

 

5 6 7 8 

2 15 27 28 

j 

ptr 

   

 

1 2 3 4 5 6 7 8 

1 2       

 i 

ptr 

      

 

  



 

 

then 13 and 15 are compared. 13 is added to ‘c’. Increment a ptr and c ptr. 
 

 

24 and 15 are compared. 15 is added to ‘c’. Increment b ptr and c ptr. 
 

 

24 and 27 are compared. 24 is added to ‘c’. Increment a ptr and c ptr. 
 

 

26 and 27 are compared. 26 is added to ‘c’. Increment a ptr and c ptr. 
 

 

As one of the lists is exhausted. The remainder of the b array is then copied to ‘c’. 
 

 

 
h 

ptr 

 
 

Algorithm 
 

Algorithm MERGESORT (low, high) 

// a (low : high) is a global array to be sorted. 
{ 

 
i 

ptr 

if (low < high) 

{ 

mid := (low  + high)/2 //finds where to split the set 

MERGESORT(low,  mid) //sort one subset 

MERGESORT(mid+1, high) //sort the other subset 
MERGE(low, mid, high) // combine the results 

} 

} 

 

 

 

 

1 2 3 4 

1 13 24 26 

 h 
ptr 

  

 

5 6 7 8 

2 15 27 28 

 j 
ptr 

  

 

1 2 3 4 5 6 7 8 

1 2 13      

  i 
ptr 

     

 

1 2 3 4 

1 13 24 26 

  h 

ptr 

 

 

5 6 7 8 

2 15 27 28 

 j 

ptr 

  

 

1 2 3 4 5 6 7 8 

1 2 13 15     

   i 

ptr 

    

 

1 2 3 4 

1 13 24 26 

  h 

ptr 

 

 

5 6 7 8 

2 15 27 28 

  j 

ptr 

 

 

1 2 3 4 5 6 7 8 

1 2 13 15 24    

    i 

ptr 

   

 

1 2 3 4 

1 13 24 26 

   h 

ptr 

 

5 6 7 8 

2 15 27 28 

  j 

ptr 

 

 

1 2 3 4 5 6 7 8 

1 2 13 15 24 26   

     i 

ptr 

  

 

1 2 3 4 

1 13 24 26 

    

 

5 6 7 8 

2 15 27 28 

  j 

ptr 

 

1 2 3 4 5 6 7 8 

1 2 13 15 24 26 27 28 

        

 



 

 

Algorithm MERGE (low, mid, high) 
// a (low : high) is a global array containing two sorted subsets 

// in a (low : mid) and in a (mid + 1 : high). 
// The objective is to merge these sorted sets into single sorted 

// set residing in a (low : high). An auxiliary array B is used. 
{ 

h :=low; i := low; j:= mid + 1; 

while ((h < mid) and (J < high)) do 
{ 

if (a[h] < a[j]) then 
{ 

 
} 

else 
{ 

 
} 

b[i] := a[h]; h := h + 1; 

 
 

b[i] :=a[j]; j := j + 1; 

i := i + 1; 
} 

if (h > mid) then 
for k := j to high do 

{ 

b[i] := a[k]; i := i + 1; 

} 
else 

for k := h to mid do 
{ 

b[i] := a[K]; i := i + l; 
} 

for k := low to high do 

a[k] := b[k]; 

} 

 

 

Example 

 
For example let us select the following 8 entries 7, 2, 9, 4, 3, 8, 6, 1 to illustrate 
merge sort algorithm: 

 

 

 

 

 

 
 

 

 

 

 

7, 2, 9, 4 | 3, 8, 6, 1  1, 2, 3, 4, 6, 7, 8, 9 

  

 

  

 

  

 

  

 

  



 

 

Tree Calls of MERGESORT(1, 8) 

 
The following figure represents the sequence of recursive calls that are produced by 

MERGESORT when it is applied to 8 elements. The values in each node are the values 

of the parameters low and high. 

 
 

 

 

 

 
 

 
 

Tree Calls of MERGE() 

 
The tree representation of the calls to procedure MERGE by MERGESORT is as 
follows: 

 
 

 

 

 
 

 
Analysis of Merge Sort 

 

We will assume that ‘n’ is a power of 2, so that we always split into even halves, so 

we solve for the case n = 2k. 

 

For n = 1, the time to merge sort is constant, which we will be denote by 1. 

Otherwise, the time to merge sort ‘n’ numbers is equal to the time to do two 

recursive merge sorts of size n/2, plus the time to merge, which is linear. The 

equation says this exactly: 

 

T(1) = 1 

T(n) = 2 T(n/2) + n 

 

This is a standard recurrence relation, which can be solved several ways. We will 

solve by substituting recurrence relation continually on the right–hand side. 

 

We have, T(n) = 2T(n/2) + n 

 

1, 8 

2, 2 1, 1 

1, 2 

4, 4 3, 3 

3, 4 

6, 6 5, 5 

5, 6 

8, 8 7, 7 

7, 8 

1, 1, 2 3, 3, 4 5, 5, 6 7, 7, 8 

1, 4, 8 

5, 6, 8 1, 2, 4 

1, 4 5, 8 



 

 

Since we can substitute n/2 into this main equation 
 

2 T(n/2) 

 

We have, 

= 

= 

2 (2 (T(n/4)) + n/2) 

4 T(n/4) + n 

T(n/2) = 2 T(n/4) + n 

T(n) = 4 T(n/4) + 2n 

 

Again, by substituting n/4 into the main equation, we see that 
 

4T (n/4) = 
= 

4 (2T(n/8)) + n/4 
8 T(n/8) + n 

So we have,   

T(n/4) = 2 T(n/8) + n 
T(n) = 8 T(n/8) + 3n 

 

Continuing in this manner, we obtain: 

 

T(n) = 2k T(n/2k) + K. n 

 

As n = 2k, K = log2n, substituting this in the above equation 
 

T (n)  2log 2
n
 



 

2 
= n T(1) + n log n 

= n log n + n 

Representing this in O notation: 

T(n) = O(n log n) 
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Quick Sort 
 

The main reason for the slowness of Algorithms like SIS is that all comparisons 

and exchanges between keys in a sequence w1, w2, . . . . , wn take place between 

adjacent pairs. In this way it takes a relatively long time for a key that is badly out 
of place to work its way into its proper position in the sorted sequence. 

 

Hoare his devised a very efficient way of implementing this idea in the early 

1960’s that improves the O(n2) behavior of SIS algorithm with an expected 

performance that is O(n log n). 

 

In essence, the quick sort algorithm partitions the original array by rearranging it 

into two groups. The first group contains those elements less than some arbitrary 

chosen value taken from the set, and the second group contains those elements 

greater than or equal to the chosen value. 

 

The chosen value is known as the pivot element. Once the array has been 

rearranged in this way with respect to the pivot, the very same partitioning is 

recursively applied to each of the two subsets. When all the subsets have been 

partitioned and rearranged, the original array is sorted. 

 
The function partition() makes use of two pointers ‘i’ and ‘j’ which are moved 
toward each other in the following fashion: 

 

 Repeatedly increase the pointer ‘i’ until a[i] >= pivot. 
 

 Repeatedly decrease the pointer ‘j’ until a[j] <= pivot. 

 If j > i, interchange a[j] with a[i] 
 

 Repeat the steps 1, 2 and 3 till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’ 
pointer crosses ‘j’ pointer, the position for pivot is found and place pivot 
element in ‘j’ pointer position. 

 

The program uses a recursive function quicksort(). The algorithm of quick 
sort function sorts all elements in an array ‘a’ between positions ‘low’ and 
‘high’. 

 
 It terminates when the condition low >= high is satisfied. This condition 

will be satisfied only when the array is completely sorted. 

  



 

 
 Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now 

it calls the partition function to find the proper position j of the element 
x[low] i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], . . 
. . 
. . . x[j-1] and x[j+1], x[j+2], . . .x[high]. 

 

 It calls itself recursively to sort the left sub-array x[low], x[low+1], . . . . . 

. . x[j-1] between positions low and j-1 (where j is returned by 

the partition function). 
 

 It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . . . . . 

. . . x[high] between positions j+1 and high. 

 

Algorithm 

Algorithm 

QUICKSORT(low, 

high) 
/* sorts the elements a(low), . . . . . , a(high) which reside in the global array A(1 : 

n) into ascending order a (n + 1) is considered to be defined and must be 
greater than all elements in a(1 : n); A(n + 1) = +  */ 
{ 

if low < high then 
{ 

j := PARTITION(a, low, high+1); 

// J is the position of the partitioning element 

QUICKSORT(low, j – 1); 
QUICKSORT(j + 1 , high); 

} 
} 

 

Algorithm PARTITION(a, m, p) 

{ 

V   a(m); i   m; j  p; // A (m) is the partition 

element do 
{ 

loop  i  := i   + 1  until  a(i) > v // i moves left to 

right loop  j  := j  – 1  until  a(j)  < v // p moves right to 

left if (i < j) then INTERCHANGE(a, i, j) 
} while (i > j); 

a[m] :=a[j]; a[j] :=V; // the partition element belongs at position P 

return j; 
} 

 

Algorithm INTERCHANGE(a, i, j) 
{ 

P:=a[i]; 

a[i] := 

a[j]; a[j] 

:= p; 
} 

 

 

Analysis of Quick Sort: 

 

Like merge sort, quick sort is recursive, and hence its analysis requires solving a 

recurrence formula. We will do the analysis for a quick sort, assuming a random 

pivot (and no cut off for small files). 



 



 

We will take T (0) = T (1) = 1, as in merge sort. 

 

The running time of quick sort is equal to the running time of the two recursive 

calls plus the linear time spent in the partition (The pivot selection takes only 

constant time). This gives the basic quick sort relation: 

 

T (n) = T (i) + T (n – i – 1) +  C n - (1) 

 

Where, i = |S1| is the number of elements in S1. 

 

Worst Case Analysis 

 
The pivot is the smallest element, all the time. Then i=0 and if we ignore T(0)=1, 

which is insignificant, the recurrence is: 
 

T (n) = T (n – 1) +  C n n > 1 - (2) 

 

Using equation – (1) repeatedly, thus 

 

T (n – 1) = T (n – 2) + C (n – 1) 

 

T (n – 2) = T (n – 3) + C (n – 2) 

 

- - - - - - - - 

 

T  (2) = T (1) + C (2) 

 

Adding up all these equations yields 
 

 
T (n)  T (1) 

n 

i 
i  2 

= O  (n2) - (3) 

 

Best Case Analysis 

 

In the best case, the pivot is in the middle. To simply the math, we assume that the 

two sub-files are each exactly half the size of the original and although this gives a 

slight over estimate, this is acceptable because we are only interested in a Big – oh 

answer. 

 

T (n)    =  2 T (n/2) + C n - (4) 

 

Divide both sides by n 
 

T(n) 
 

  

n 
 

T(n / 2)  C 
n / 2 

 

- (5) 

 

Substitute n/2 for ‘n’ in equation (5) 
 

T(n / 2) 
 

  

n / 2 
 

T(n / 4)  C 
n / 4 

 

- (6) 

Substitute n/4 for ‘n’ in equation (6) 
 

T(n / 4) 
 

  

n / 4 
 

T(n / 8)  C 
n / 8 

 

- (7) 

- - - - - - - - 



 

1 

- - - - - - - - 

Continuing in this manner, we obtain: 
 

T(2) 

2 
 

T(1)  C
 

 

- (8) 

We add all the equations from 4 to 8 and note that there are log n of them: 
 

T(n) 
 

  

n 
 

T(1) 

1 

 

 C log n - (9)



 

 

Which yields, T (n) = C n log n + n = O(n  log n) - (10) 

This is exactly the same analysis as merge sort, hence we get the same 

answer. 

Average Case Analysis 

 
The number of comparisons for first call on partition: Assume left_to_right moves 

over k smaller element and thus k comparisons. So when right_to_left crosses 

left_to_right it has made n-k+1 comparisons. So, first call on partition makes 

n+1 comparisons. The average case complexity of quicksort is 
 

T(n) = comparisons for first call on quicksort 

+ 

{Σ 1<=nleft,nright<=n [T(nleft) + T(nright)]}n = (n+1) + 2 [T(0) +T(1) + T(2) + 

----- + T(n-1)]/n 
 

nT(n) = n(n+1) + 2 [T(0) +T(1) + T(2) + ----- + T(n-2) + T(n-1)] 

 
(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) + ----- + T(n-2)] \ 

 
Subtracting both sides: 

 
nT(n) –(n-1)T(n-1) = [ n(n+1) – (n-1)n] + 2T(n-1) = 2n + 

2T(n-1) nT(n) = 2n + (n-1)T(n-1) + 2T(n-1) = 2n + (n+1)T(n-

1) 

T(n) = 2 + (n+1)T(n-1)/n 

The recurrence relation 

obtained is: T(n)/(n+1) = 

2/(n+1) + T(n-1)/n 

 
Using the method of subsititution: 

 
T(n)/(n+1) = 2/(n+1) + T(n-1)/n 

T(n-1)/n = 2/n + T(n-2)/(n-1) 

T(n-2)/(n-1) = 2/(n-1) + T(n-3)/(n-2) 

T(n-3)/(n-2) = 2/(n-2) + T(n-4)/(n-3) 

.  . 

.  . 

T(3)/4 = 2/4 + T(2)/3 

T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 + T(0) 

Adding both sides: 

T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] 

= [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] + T(0) + 

[2/(n+1) + 2/n + 2/(n-1) + ---------- +2/4 + 2/3] 

Cancelling the common terms: 

T(n)/(n+1) = 2[1/2 +1/3 +1/4+--------------+1/n+1/(n+1)] 

T(n) = (n+1)2[ 2k n 1 
1/ k 

=2(n+1) [ ] 

=2(n+1)[log (n+1) – log 2] 
=2n log (n+1) + log (n+1)-2n log 2 –log 2 

T(n)= O(n log n) 
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Greedy Method : CO3

 
 

Greedy is the most straight forward design technique. Most of the problems have n 

inputs and require us to obtain a subset that satisfies some constraints. Any subset 

that satisfies these constraints is called a feasible solution. We need to find a feasible 

solution that either maximizes or minimizes the objective function. A feasible solution 

that does this is called an optimal solution. 

 

The greedy method is a simple strategy of progressively building up a solution, one 

element at a time, by choosing the best possible element at each stage. At each stage, 

a decision is made regarding whether or not a particular input is in an optimal solution. 

This is done by considering the inputs in an order determined by some selection 

procedure. If the inclusion of the next input, into the partially constructed optimal 

solution will result in an infeasible solution then this input is not added to the partial 

solution. The selection procedure itself is based on some optimization measure. Several 

optimization measures are plausible for a given problem. Most of them, however, will 

result in algorithms that generate sub-optimal solutions. This version of greedy 

technique is called subset paradigm. Some problems like Knapsack, Job sequencing 

with deadlines and minimum cost spanning trees are based on subset paradigm. 

 

For the problems that make decisions by considering the inputs in some order, each 

decision is made using an optimization criterion that can be computed using decisions 

already made. This version of greedy method is ordering paradigm. Some problems like 

optimal storage on tapes, optimal merge patterns and single source shortest path are 

based on ordering paradigm. 

CONTROL ABSTRACTION 

 
Algorithm Greedy (a, n) 
// a(1 : n) contains the ‘n’ inputs 

{ 

solution := ; // initialize the solution to empty 

for i:=1 to n do 
{ 

x := select (a); 
if feasible (solution, x) then 

solution := Union (Solution, x); 

} 
return solution; 

} 
 

Procedure Greedy describes the essential way that a greedy based algorithm will look, 

once a particular problem is chosen and the functions select, feasible and union are 

properly implemented. 

 

The function select selects an input from ‘a’, removes it and assigns its value to ‘x’. 
Feasible is a Boolean valued function, which determines if ‘x’ can be included into the 

solution vector. The function Union combines ‘x’ with solution and updates the objective 

function.

  



 

 

KNAPSACK PROBLEM 

 
Let us apply the greedy method to solve the knapsack problem. We are given ‘n’ 
objects and a knapsack. The object ‘i’ has a weight wi and the knapsack has a capacity 
‘m’. If a fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit of pi 
xi is earned. The objective is to fill the knapsack that maximizes the total profit earned. 

 

Since the knapsack capacity is ‘m’, we require the total weight of all chosen objects to 
be at most ‘m’. The problem is stated as: 

 

 
maximize 

subject to 

n 


i   1 

n 


i  1 

 
pi xi 

 
ai xi    M where, 0 < xi < 1 and 1 < i < n 

The profits and weights are positive numbers. 

 

Algorithm 

 

If the objects are already been sorted into non-increasing order of p[i] / w[i] then the 

algorithm given below obtains solutions corresponding to this strategy. 
 

Algorithm GreedyKnapsack (m, n) 

// P[1 : n] and w[1 : n] contain the profits and weights respectively of 

// Objects ordered so that p[i] / w[i] > p[i + 1] / w[i + 1]. 

// m is the knapsack size and x[1: n] is the solution vector. 

{ 

for i := 1 to n do x[i]  := 0.0 // initialize x 
U := m; 
for i := 1 to n do 

{ 

if (w(i) > U) then break; 

x [i] := 1.0; U := U – w[i]; 
} 

if (i < n) then x[i] := U / w[i]; 

} 

 

 

Running time: 

 
The objects are to be sorted into non-decreasing order of pi / wi ratio. But if we 
disregard the time to initially sort the objects, the algorithm requires only O(n) time. 

 

Example: 

 
Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, p2, p3) = 
(25, 24, 15) and (w1, w2, w3) = (18, 15, 10). 

 

 

 



 

 

1. First, we try to fill the knapsack by selecting the objects in some order: 

 

x1 x2 x3  wi xi  pi xi 

1/2 1/3 1/4 18 x 1/2 + 15 x 1/3 + 10 x 1/4 
= 16.5 

25 x 1/2 + 24 x 1/3 + 15 x 1/4 = 
24.25 

 

2. Select the object with the maximum profit first (p = 25). So, x1 = 1 and profit 
earned is 25. Now, only 2 units of space is left, select the object with next 

largest profit (p = 24). So, x2 = 2/15 
 

x1 x2 x3  wi xi  pi xi 

1 2/15 0 18 x 1 + 15 x 2/15 = 20 25 x 1 + 24 x 2/15 = 28.2 

 

 
3. Considering the objects in the order of non-decreasing weights wi. 

 

x1 x2 x3  wi xi  pi xi 

0 2/3 1 15 x 2/3 + 10 x 1 = 20 24 x 2/3 + 15 x 1 = 31 

 

4. Considered the objects in the order of the ratio pi / wi . 
 

p1/w1 p2/w2 p3/w3 

25/18 24/15 15/10 

1.4 1.6 1.5 

 
 

Sort the objects in order of the non-increasing order of the ratio pi / xi. Select the 
object with the maximum pi / xi ratio, so, x2 = 1 and profit earned is 24. Now, 
only 5 units of space is left, select the object with next largest pi / xi ratio, so x3 = 
½ and the profit earned is 7.5. 

x1 x2 x3  wi xi  pi xi 

0 1 1/2 15 x 1 + 10 x 1/2 = 20 24 x 1 + 15 x 1/2 = 31.5 

 
This solution is the optimal solution. 
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4.4. OPTIMAL STORAGE ON TAPES 
 

There are ‘n’ programs that are to be stored on a computer tape of length ‘L’. Each 

program ‘i’ is of length li, 1 ≤ i ≤ n. All the programs can be stored on the tape if 
and only if the sum of the lengths of the programs is at most ‘L’. 

 

We shall assume that whenever a program is to be retrieved from this tape, the 

tape is initially positioned at the front. If the programs are stored in the order i = i1, 

i2, . . . . . 
, in, the time tJ needed to retrieve program iJ is proportional to 

 l ik 

1 k  j 

 

 

  



 

 

If all the programs are retrieved equally often then the expected or mean retrieval time 
(MRT) is: 

1 
.  t 

  

n 
1   J   n 

j
 

 

For the optimal storage on tape problem, we are required to find the permutation for 

the ‘n’ programs so that when they are stored on the tape in this order the MRT is 

minimized. 

d (I) 

n 


J  1 

J 


K  1 

l i k 

 
 

Example 

 

Let n = 3, (l1, l2, l3) = (5, 10, 3). Then find the optimal ordering? 

Solution: 

 

There are n! = 6 possible orderings. They are: 
 

Ordering I d(I)   

1, 2, 3 5 + (5 +10) +(5 + 10 + 3) = 38 

1, 3, 2 5 + (5 + 3) + (5 + 3 + 10) = 31 

2, 1, 3 10 + (10 + 5) + (10 + 5 + 3) = 43 

2, 3, 1 10 + (10 + 3) + (10 + 3 + 5) = 41 

3, 1, 2 3 + (3 + 5) + (3 + 5 + 10) = 29 

3, 2, 1 3 + (3 + 10) + (3 + 10 + 5) = 34 

 
From the above, it simply requires to store the programs in non-decreasing order 

(increasing order) of their lengths. This can be carried out by using a efficient sorting 

algorithm (Heap sort). This ordering can be carried out in O (n log n) time using heap 

sort algorithm. 

 

The tape storage problem can be extended to several tapes. If there are m  1 tapes, 

To, . . . . . . ,Tm – 1, then the programs are to be distributed over these tapes. 
m  1 

The total retrieval time (RT) is 
J  0 

d(IJ ) 

The objective is to store the programs in such a way as to minimize RT. 
 

The programs are to be sorted in non decreasing order of their lengths li’s, l1 < l2 < .. . 
.. . . ln. 
The first ‘m’ programs will be assigned to tapes To, . . . . ,Tm-1 respectively. The next ‘m’ 
programs will be assigned to T0, . . . . ,Tm-1 respectively. The general rule is that 
program i is stored on tape Ti mod m. 

 

 

 

 

 

 

 



 

 

Algorithm: 

 
The algorithm for assigning programs to tapes is as follows: 

 

Algorithm Store (n, m) 
// n is the number of programs and m the number of tapes 
{ 

j := 0; // next tape to store 

on for i :=1 to n do 
{ 

Print (‘append program’, i, ‘to permutation for tape’, 
j); j := (j + 1) mod m; 

} 

} 
 

On any given tape, the programs are stored in non-decreasing order of their lengths. 

 
 

JOB SEQUENCING WITH DEADLINES 

 
When we are given a set of ‘n’ jobs. Associated with each Job i, deadline di > 0 and 
profit Pi > 0. For any job ‘i’ the profit pi is earned iff the job is completed by its 
deadline. Only one machine is available for processing jobs. An optimal solution is 
the feasible solution with maximum profit. 

 

Sort the jobs in ‘j’ ordered by their deadlines. The array d [1 : n] is used to store the 

deadlines of the order of their p-values. The set of jobs j [1 : k] such that j [r], 1 ≤ r 
≤ k are the jobs in ‘j’ and d (j [1]) ≤ d (j[2]) ≤ . . . ≤ d (j[k]). To test whether J U 
{i} is feasible, we have just to insert i into J preserving the deadline ordering and 

then verify that d [J[r]] ≤ r, 1 ≤ r ≤ k+1. 
 

Example: 

 
Let n = 4, (P1, P2, P3, P4,) = (100, 10, 15, 27) and (d1 d2 d3 d4) = (2, 1, 2, 1). The 
feasible solutions and their values are: 

 

S. No Feasible Solution Procuring 

sequence 

Value Remarks 

1 1,2 2,1 110  

2 1,3 1,3 or 3,1 115  

3 1,4 4,1 127 OPTIMAL 

4 2,3 2,3 25  

5 3,4 4,3 42  

6 1 1 100  

7 2 2 10  

8 3 3 15  

9 4 4 27  

 

 

Algorithm: 

 
The algorithm constructs an optimal set J of jobs that can be processed by 
their deadlines. 

 

Algorithm GreedyJob (d, J, n) 



 

// J is a set of jobs that can be completed by their deadlines. 

{ 

J := {1}; 
for i := 2 to n do 

{ 

if (all jobs in J U {i} can be completed by their dead lines) 

then J := J U {i}; 
} 

} 
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Graph Algorithms: CO3 
 

Basic Definitions: 

 

 Graph G is a pair (V, E), where V is a finite set (set of vertices) and E is a 

finite set of pairs from V (set of edges). We will often denote n := |V|, m := 

|E|. 
 

 Graph G can be directed, if E consists of ordered pairs, or undirected, if E 

consists of unordered pairs. If (u, v)  E, then vertices u, and v are adjacent. 

 
 We can assign weight function to the edges: wG(e) is a weight of edge e  E. 

The graph which has such function assigned is called weighted. 

 

 Degree of a vertex v is the number of vertices u for which (u, v)  E (denote 

deg(v)). The number of incoming edges to a vertex v is called in–degree 

of the vertex (denote indeg(v)). The number of outgoing edges from a 

vertex is called out-degree (denote outdeg(v)). 

 

Representation of Graphs: 

 

Consider graph G = (V, E), where V= {v1, v2,….,vn}. 

Adjacency matrix represents the graph as an n x n matrix A = (ai,j), where 

 
a i, j 

 1, 
  if (vi , v j )  E, 

  0, otherwise 

The matrix is symmetric in case of undirected graph, while it may be asymmetric if 

the graph is directed. 

 

We may consider various modifications. For example for weighted graphs, we may 

have 

a i, j 

 w (vi, v j ), 
 

 default, 

if (vi , v j )  E, 

otherwise, 

  



 

 

Where default is some sensible value based on the meaning of the weight function 

(for example, if weight function represents length, then default can be , meaning 

value larger than any other value). 

 

Adjacency List: An array Adj [1 . . . . . . . n] of pointers where for 1 < v < n, Adj [v] 

points to a linked list containing the vertices which are adjacent to v (i.e. the vertices 

that can be reached from v by a single edge). If the edges have weights then these 

weights may also be stored in the linked list elements. 

 

 

 
 

Paths and Cycles: 

 
A path is a sequence of vertices (v1, v2, . . . . . . , vk), where for all i, (vi, vi+1)  E. A 
path is simple if all vertices in the path are distinct. 

 
A (simple) cycle is a sequence of vertices (v1, v2, . . . . . . , vk, vk+1 = v1), where for 
all i, (vi, vi+1)  E and all vertices in the cycle are distinct except pair v1, vk+1. 

 
 

Subgraphs and Spanning Trees: 

Subgraphs: A graph G’ = (V’, E’) is a subgraph of graph G = (V, E) iff V’  V and E’ 
E. 

 

The undirected graph G is connected, if for every pair of vertices u, v there exists a 

path from u to v. If a graph is not connected, the vertices of the graph can be divided 

into connected components. Two vertices are in the same connected component iff 

they are connected by a path. 

 

Tree is a connected acyclic graph. A spanning tree of a graph G = (V, E) is a tree  

that contains all vertices of V and is a subgraph of G. A single graph can have multiple 

spanning trees. 
 

Lemma 1: Let T be a spanning tree of a graph G. Then 

1. Any two vertices in T are connected by a unique simple path. 

2. If any edge is removed from T, then T becomes disconnected. 

3. If we add any edge into T, then the new graph will contain a cycle. 

4. Number of edges in T is n-1. 

 
Minimum Spanning Trees (MST): 

 

A spanning tree for a connected graph is a tree whose vertex set is the same as the 

vertex set of the given graph, and whose edge set is a subset of the edge set of the 

given graph. i.e., any connected graph will have a spanning tree. 

 
Weight of a spanning tree w (T) is the sum of weights of all edges in T. The Minimum 

spanning tree (MST) is a spanning tree with the smallest possible weight. 

 



 

 

 

 

 

G: 

          

 

A gra p h G: 

  
T h re e 

 

( of 

 

ma n y 

 
p o s s ib l e) 

 
s p a n n in g 

 
t re e s 

 
f ro m 

 
gra p h 

 
G: 

 

  

2 

  

2 

 4   

G: 3 5 3 

 6   

 1  1 

A  w e ig ht e d  gra p h  G: T h e min i ma l s p a n n in g t re e f ro m w e ig ht e d gra p h G:  

 
 

Here are some examples: 

 
To explain further upon the Minimum Spanning Tree, and what it applies to, let's 
consider a couple of real-world examples: 

1. One practical application of a MST would be in the design of a network. For 

instance, a group of individuals, who are separated by varying distances, wish  

to be connected together in a telephone network. Although MST cannot do 

anything about the distance from one connection to another, it can be used to 

determine the least cost paths with no cycles in this network, thereby 

connecting everyone at a minimum cost. 

2. Another useful application of MST would be finding airline routes. The vertices of 
the graph would represent cities, and the edges would represent routes between 
the cities. Obviously, the further one has to travel, the more it will cost, so MST 
can be applied to optimize airline routes by finding the least costly paths with no 
cycles. 

 

 

To explain how to find a Minimum Spanning Tree, we will look at two algorithms: the 

Kruskal algorithm and the Prim algorithm. Both algorithms differ in their methodology, 

but both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim’s 
algorithm uses vertex connections in determining the MST. 

 
 

Kruskal’s Algorithm 

 

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. 

picking an edge with the least weight in a MST). 

 

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the 

shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges 

have been added. Sometimes two or more edges may have the same cost. The order in 

which the edges are chosen, in this case, does not matter. Different MSTs may result, 

but they will all have the same total cost, which will always be the minimum cost. 

 

 



 

 

 

Algorithm: 

 
The algorithm for finding the MST, using the Kruskal’s method is as follows: 

 

Algorithm Kruskal (E, cost, n, t) 

// E is the set of edges in G. G has n vertices. cost [u, v] is the 

// cost of edge (u, v). ‘t’ is the set of edges in the minimum-cost spanning tree. 

// The final cost is returned. 

{ 

Construct a heap out of the edge costs using heapify; 

for i := 1 to n do parent [i] := -1; 
// Each vertex is in a different set. 

i := 0; mincost := 0.0; 

while ((i < n -1) and (heap not empty)) do 

{ 

Delete a minimum cost edge (u, v) from the heap and 

re-heapify using Adjust; 

j := Find (u); k := Find (v); 

if (j  k) then 
{ 

i := i + 1; 

t [i, 1] := u; t [i, 2] := v; 

mincost :=mincost + cost [u, v]; 

Union (j, k); 
} 

} 

if (i  n-1) then write ("no spanning tree"); 

else return mincost; 
} 

 

 

Running time: 

 

 The number of finds is at most 2e, and the number of unions at most n-1. 
Including the initialization time for the trees, this part of the algorithm has a 
complexity that is just slightly more than O (n + e). 

 

 We can add at most n-1 edges to tree T. So, the total time for operations on T is 

O(n). 

 

Summing up the various components of the computing times, we get O (n + e log e) as 

asymptotic complexity 

 
 

Example 1: 

 

 

 

 

1
 1 0 

2
 

4 5 

30 

50 

4 0 

3 5 
 

 25 

55 
 

20 

 
15 



 

 

Arrange all the edges in the increasing order of their costs: 

 
Cost 10 15 20 25 30 35 40 45 50 55 

Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6) 

 

The edge set T together with the vertices of G define a graph that has up to n 

connected components. Let us represent each component by a set of vertices in it. 

These vertex sets are disjoint. To determine whether the edge (u, v) creates a cycle, 

we need to check whether u and v are in the same vertex set. If so, then a cycle is 

created. If not then no cycle is created. Hence two Finds on the vertex sets suffice. 

When an edge is included in T, two components are combined into one and a union is 

to be performed on the two sets. 

 

Edge 

 

 
 

 

(1, 2) 

 

 
 

 
(3, 6) 

 
 

 

 
(4, 6) 

 
 

 

 
(2, 6) 

Cost 

 

 
 

 

10 

 

 
 

 
15 

 
 

 

 
20 

 
 

 

 
25 

Spanning Forest 

 
1 2 3 4 5 6 

 
 
 

1 2 3 4 5 6 

 
 

 
 

1        2 3 4 5 

 
6 

 
 
 

1 2 3 5 

 
4 6 

 

 
1 2 5 

 

4 3 

 
6 

Edge Sets 

 
{1}, {2}, {3}, 

{4}, {5}, {6} 

 

{1, 2}, {3}, {4}, 
{5}, {6} 

 

 

 
{1, 2}, {3, 6}, 
{4}, {5} 

 

 

 
{1, 2}, {3, 4, 6}, 

{5} 

 
 

 
{1,  2, 3, 4, 6}, 

{5} 

Remarks 

 

 
 

 

The vertices 1 and 

2 are in different 
sets, so the edge 
is combined 

 

The vertices 3 and 

6 are in different 

sets, so the edge 

is combined 

 

The vertices 4 and 

6 are in different 
sets, so the edge 
is combined 

 
 

The vertices 2 and 

6 are in different 
sets, so the edge 
is combined 

     The vertices 1 and 

(1, 4) 30  Reject  4 are in the same 
     set, so the edge is 
     rejected 

 
(3, 5) 

 
35 

 
1 

 
2 

  
The vertices 3 and 

     5 are in the same 

  
4 5 3 

 
6 

{1, 2, 3, 4, 5, 6} set, so the edge is 
combined 
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MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM: CO3 

 
A given graph can have many spanning trees. From these many spanning trees, we 

have to select a cheapest one. This tree is called as minimal cost spanning tree. 

 

Minimal cost spanning tree is a connected undirected graph G in which each edge is 

labeled with a number (edge labels may signify lengths, weights other than costs). 

Minimal cost spanning tree is a spanning tree for which the sum of the edge labels 

is as small as possible 

 

The slight modification of the spanning tree algorithm yields a very simple algorithm 

for finding an MST. In the spanning tree algorithm, any vertex not in the tree but 

connected to it by an edge can be added. To find a Minimal cost spanning tree, we 

must be selective - we must always add a new vertex for which the cost of the new 

edge is as small as possible. 

 

This simple modified algorithm of spanning tree is called prim's algorithm for finding 

an Minimal cost spanning tree. 

Prim's algorithm is an example of a greedy algorithm. 

       Algorithm Prim (E, cost, n, t) 
// E is the set of edges in G. cost [1:n, 1:n] is the cost 
// adjacency matrix of an n vertex graph such that cost [i, j] is 

// either a positive real number or  if no edge (i, j) exists. 

// A minimum spanning tree is computed and stored as a set of 

// edges in the array t [1:n-1, 1:2]. (t [i, 1], t [i, 2]) is an edge in 

// the minimum-cost spanning tree. The final cost is returned. 

{ 

Let (k, l) be an edge of minimum cost in 

E; mincost := cost [k, l]; 
t [1, 1] := k; t [1, 2] := l; 

for i :=1 to n do // Initialize 

near if (cost [i, l] < cost [i, k]) then near [i] := 
l; 

else near [i] 

:= k; near [k] 

:=near [l] := 0; 
for  i:=2 to n -  1 do // Find n - 2 additional edges for t. 
{ 

Let j be an index such that near [j]  0 and 

cost [j, near [j]] is minimum; 

t [i, 1] := j; t [i, 2] := near [j]; 

mincost := mincost + cost [j, near 

[j]]; near [j] := 0 
for k:= 1 to n do // Update near[]. 

if ((near [k]  0) and (cost [k, near [k]] > cost [k, 

j])) then near [k] := j; 
} 

return mincost; 

}

  



 


   



 

Running time: 
 

We do the same set of operations with dist as in Dijkstra's algorithm (initialize 

structure, m times decrease value, n - 1 times select minimum). Therefore, we get O 
(n2) time when we implement dist with array, O (n + E  log n) when we implement it 

with a heap. 

 

For each vertex u in the graph we dequeue it and check all its neighbors in  (1 + deg 

(u)) time. Therefore the running time is: 
 

  
 

 1degv    
 n   degv   (n  m) 

   v V   v   V 
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The Single Source Shortest-Path Problem: DIJKSTRA'S ALGORITHMS:  CO3 

 

In the previously studied graphs, the edge labels are called as costs, but here we think 

them as lengths. In a labeled graph, the length of the path is defined to be the sum of 

the lengths of its edges. 

 

In the single source, all destinations, shortest path problem, we must find a shortest 

path from a given source vertex to each of the vertices (called destinations) in the 

graph to which there is a path. 

 

Dijkstra’s algorithm is similar to prim's algorithm for finding minimal spanning trees. 

Dijkstra’s algorithm takes a labeled graph and a pair of vertices P and Q, and finds the 

shortest path between then (or one of the shortest paths) if there is more than one. 
The principle of optimality is the basis for Dijkstra’s algorithms. 

 

Dijkstra’s algorithm does not work for negative edges at all. 

 

The figure lists the shortest paths from vertex 1 for a five vertex weighted digraph. 

8 0 
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Shortest Paths 

Algorithm: 
 

Algorithm Shortest-Paths (v, cost, dist, n) 
// dist [j], 1 < j < n, is set to the length of the shortest path 
// from vertex v to vertex j in the digraph G with n vertices. 

// dist [v] is set to zero. G is represented by its 
// cost adjacency matrix cost [1:n, 1:n]. 

{ 

for i :=1 to n do 

{ 

S  [i] := false; // Initialize S. 
dist [i] :=cost [v, i]; 

} 

S[v] := true; dist[v]  := 0.0; // Put v in S. 

for num := 2 to n – 1 do 
{ 

Determine n - 1 paths from v. 

Choose u from among those vertices not in S such that dist[u] is minimum; 

S[u] := true; // Put u is S. 

 

 

   4 
2

 

 

 

 

  

 
 

 

  

   

  

    

  



 

for (each w adjacent to u with S [w] = false) do 

if (dist [w] > (dist [u] + cost [u,  w]) then // Update distances 
dist [w] := dist [u] + cost [u, w]; 

} 

} 

 

 

Running time: 

 

Depends on implementation of data structures for dist. 

 

 Build a structure with  n elements A 

 at most m = E   times decrease the value of an item mB 

 ‘n’ times select the  smallest value nC 

 For array A = O (n); B = O (1); C = O (n) which gives O (n2) total. 

 For heap A = O (n); B = O (log n); C = O (log n) which gives O 

(n + m log n) total. 
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Dynamic Programming General method: CO4 
 

Dynamic programming is a name, coined by Richard Bellman in 1955. Dynamic 
programming, as greedy method, is a powerful algorithm design technique that can 

be used when the solution to the problem may be viewed as the result of a sequence 
of decisions. In the greedy method we make irrevocable decisions one at a time, 
using a greedy criterion. However, in dynamic programming we examine the decision 
sequence to see whether an optimal decision sequence contains optimal decision 

subsequence. 
 

When optimal decision sequences contain optimal decision subsequences, we can 

establish recurrence equations, called dynamic-programming recurrence equations, 

that enable us to solve the problem in an efficient way. 

 

Dynamic programming is based on the principle of optimality (also coined by 
Bellman). The principle of optimality states that no matter whatever the initial state 
and initial decision are, the remaining decision sequence must constitute an optimal 

decision sequence with regard to the state resulting from the first decision. The 

principle implies that an optimal decision sequence is comprised of optimal decision 
subsequences. Since the principle of optimality may not hold for some formulations 
of some problems, it is necessary to verify that it does hold for the problem being 

solved. Dynamic programming cannot be applied when this principle does not hold. 
 

The steps in a dynamic programming solution are: 

 

 Verify that the principle of optimality holds 
 

 Set up the dynamic-programming recurrence equations 
 

 Solve the dynamic-programming recurrence equations for the value of the 

optimal solution. 

 

 Perform a trace back step in which the solution itself is constructed. 
 

Dynamic programming differs from the greedy method since the greedy method 
produces only one feasible solution, which may or may not be optimal, while dynamic 

programming produces all possible sub-problems at most once, one of which 
guaranteed to be optimal. Optimal solutions to sub-problems are retained in a table, 
thereby avoiding the work of recomputing the answer every time a sub-problem is 

encountered 

 
The divide and conquer principle solve a large problem, by breaking it up into smaller 

problems which can be solved independently. In dynamic programming this principle 
is carried to an extreme: when we don't know exactly which smaller problems to 
solve, we simply solve them all, then store the answers away in a table to be used 
later in solving larger problems. Care is to be taken to avoid recomputing previously 

computed values, otherwise the recursive program will have prohibitive complexity. 
In some cases, the solution can be improved and in other cases, the dynamic 
programming technique is the best approach. 

 

  



 

Two difficulties may arise in any application of dynamic programming: 

 

1. It may not always be possible to combine the solutions of smaller problems to 

form the solution of a larger one. 
 

2. The number of small problems to solve may be un-acceptably large. 

 

There is no characterized precisely which problems can be effectively solved with 

dynamic programming; there are many hard problems for which it does not seen to 
be applicable, as well as many easy problems for which it is less efficient than 
standard algorithms. 

 
 

5.1 MULTI STAGE GRAPHS 

 
A multistage graph G = (V, E) is a directed graph in which the vertices are 

partitioned into k > 2 disjoint sets Vi, 1 < i < k. In addition, if <u, v> is an edge in E, 
then u  Vi and v  Vi+1 for some i, 1 < i < k. 

 

Let the vertex ‘s’ is the source, and ‘t’ the sink. Let c (i, j) be the cost of edge <i, j>. 
The cost of a path from ‘s’ to ‘t’ is the sum of the costs of the edges on the path. The 
multistage graph problem is to find a minimum cost path from ‘s’ to ‘t’. Each set Vi 
defines a stage in the graph. Because of the constraints on E, every path from ‘s’ to 
‘t’ starts in stage 1, goes to stage 2, then to stage 3, then to stage 4, and so on, and 
eventually terminates in stage k. 

 

A dynamic programming formulation for a k-stage graph problem is obtained by first 

noticing that every s to t path is the result of a sequence of k – 2 decisions. The ith 

decision involves determining which vertex in vi+1, 1 < i < k - 2, is to be on the 
path. Let  c  (i, j) be the cost  of  the path from source to destination. Then using  the 
forward approach, we obtain: 

 
cost (i, j) = min {c (j, l) + cost (i + 1, l)} 

l  Vi + 1 

<j, l>  E 

 
ALGORITHM: 

 

Algorithm Fgraph (G, k, n, p) 

// The input is a k-stage graph G = (V, E) with n vertices 
// indexed in order or stages. E is a set of edges and c [i, j] 
// is the cost of (i, j). p [1 : k] is a minimum cost path. 

{ 
cost [n] := 0.0; 
for j:= n - 1 to 1 step – 1 do 

{ // compute cost [j] 

let r be a vertex such that (j, r) is an edge 

of G and c [j, r] + cost [r] is minimum; 
cost [j] := c [j, r] + cost [r]; 
d [j] := r: 

} 

p [1] := 1; p [k]  := n; // Find a minimum cost path. 

for j := 2 to k - 1 do p [j] := d [p [j - 1]]; 
} 

 

The multistage graph  problem  can  also be solved using the  backward approach. 
Let bp(i, j) be a minimum cost path from vertex s to j vertex in Vi. Let Bcost(i, j) be 
the cost of bp(i, j). From the backward approach we obtain: 

 
Bcost (i, j) = min { Bcost (i –1, l) + c (l, j)} 

l  Vi - 1 
<l, j>  E 

 



 

Algorithm Bgraph (G, k, n, p) 
// Same function as Fgraph 

{ 
Bcost [1] := 0.0; 
for j := 2 to n do 

{ // Compute Bcost [j]. 

Let r be such that (r, j) is an edge of 
G and Bcost [r] + c [r, j] is minimum; 
Bcost [j] := Bcost [r] + c [r, j]; 
D [j] := r; 

} //find a minimum cost path 
p [1] := 1; p [k] := n; 

for j:= k - 1 to 2 do p [j] := d [p [j + 1]]; 

} 
 

 

Complexity Analysis: 

 
The complexity analysis of the algorithm is fairly straightforward. Here, if G has E
edges, then the time for the first for loop is  (V +E).   
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All pairs shortest paths: CO3 
 

In the all pairs shortest path problem, we are to find a shortest path between every 
pair of vertices in a directed graph G. That is, for every pair of vertices (i, j), we are 

to find a shortest path from i to j as well as one from j to i. These two paths are the 

same when G is undirected. 
 

When no edge has a negative length, the all-pairs shortest path problem may be 
solved by using Dijkstra’s greedy single source algorithm n times, once with each of 
the n vertices as the source vertex. 

 

The all pairs shortest path problem is to determine a matrix A such that A (i, j) is the 
length of a shortest path from i to j. The matrix A can be obtained by solving n 

single-source problems using the algorithm shortest Paths. Since each application of 
this procedure requires O (n2) time, the matrix A can be obtained in O (n3) time. 

 

The dynamic programming solution, called Floyd’s algorithm, runs in O (n3) time. 

Floyd’s algorithm works even when the graph has negative length edges (provided 
there are no negative length cycles). 

 

The shortest i to j path in G, i ≠ j originates at vertex i and goes through some 
intermediate vertices (possibly none) and terminates at vertex j. If k is an 
intermediate vertex on this shortest path, then the subpaths from i to k and from k  

to j must be shortest paths from i to k and k to j, respectively. Otherwise, the i to j 
path is not of minimum length. So, the principle of optimality holds. Let Ak (i, j) 
represent the length of a shortest path from i to j going through no vertex of index 
greater than k, we obtain: 

 

Ak (i, j) = {min {min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)} 
1<k<n 

 
 

Algorithm All Paths (Cost, A, n) 

// cost [1:n, 1:n] is the cost adjacency matrix of a graph which 

// n vertices; A [I, j] is the cost of a shortest path from vertex 
// i to vertex j. cost [i, i] = 0.0, for 1 < i < n. 
{ 

for i := 1 to n do 
for j:= 1 to n do 

A [i, j] := cost  [i, j]; // copy cost into A. 

for k := 1 to n do 
for i := 1 to n do 

for j := 1 to n do 

A [i, j] := min (A [i, j], A [i, k] + A [k, j]); 

} 

 

Complexity Analysis: A Dynamic programming algorithm based on this recurrence 
involves in calculating n+1 matrices, each of size n x n. Therefore, the algorithm has 
a complexity of O (n3). 

 

  



 

6 2  

Example 1: 

 

Given a weighted digraph G = (V, E) with weight. Determine the length of the 

shortest path between all pairs of vertices in G. Here we assume that there are no 
cycles with zero or negative cost. 

 

6 

1 
4 

2 0 
 

4 11


3 1  1 2 
Cost adjacency matrix (A0) =  

 
0 





3 

 
 

General formula: min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)} 
1<k<n 

 

Solve the problem for different values of k = 1, 2 and 3 

 

Step 1: Solving the equation for, k = 1; 

3  0 



 



A1 (1, 1) = min {(Ao (1, 1) + Ao (1, 1)), c (1, 1)} = min {0 + 0, 0} = 0 

A1 (1, 2) = min {(Ao (1, 1) + Ao (1, 2)), c (1, 2)} = min {(0 + 4), 4} = 4 

A1 (1, 3) = min {(Ao (1, 1) + Ao (1, 3)), c (1, 3)} = min {(0 + 11), 11} = 11 

A1 (2, 1) = min {(Ao (2, 1) + Ao (1, 1)), c (2, 1)} = min {(6 + 0), 6} = 6 

A1 (2, 2) = min {(Ao (2, 1) + Ao (1, 2)), c (2, 2)} = min {(6 + 4), 0)} = 0 

A1 (2, 3) = min {(Ao (2, 1) + Ao (1, 3)), c (2, 3)} = min {(6 + 11), 2} = 2 

A1 (3, 1) = min {(Ao (3, 1) + Ao (1, 1)), c (3, 1)} = min {(3 + 0), 3} = 3 

A1 (3, 2) = min {(Ao (3, 1) + Ao (1, 2)), c (3, 2)} = min {(3 + 4), } = 7 

A1 (3, 3) = min {(Ao (3, 1) + Ao (1, 3)), c (3, 3)} = min {(3 + 11), 0} = 0 

 

 
A(1) = 

0 4 

6 0 

3 7 

11



0 

Step 2: Solving the equation for, K = 2; 

 

A2 (1, 1) = min {(A1 (1, 2) + A1 (2, 1), c (1, 1)} = min {(4 + 6), 0} = 0 

A2 (1, 2) = min {(A1 (1, 2) + A1 (2, 2), c (1, 2)} = min {(4 + 0), 4} = 4 

A2 (1, 3) = min {(A1 (1, 2) + A1 (2, 3), c (1, 3)} = min {(4 + 2), 11} = 6 

A2 (2, 1) = min {(A (2, 2) + A (2, 1), c (2, 1)} = min {(0 + 6), 6} = 6 

A2 (2, 2) = min {(A (2, 2) + A (2, 2), c (2, 2)} = min {(0 + 0), 0} = 0 

A2 (2, 3) = min {(A (2, 2) + A (2, 3), c (2, 3)} = min {(0 + 2), 2} = 2 

A2 (3, 1) = min {(A (3, 2) + A (2, 1), c (3, 1)} = min {(7 + 6), 3} = 3 

A2 (3, 2) = min {(A (3, 2) + A (2, 2), c (3, 2)} = min {(7 + 0), 7} = 7 

A2 (3, 3) = min {(A (3, 2) + A (2, 3), c (3, 3)} = min {(7 + 2), 0} = 0 

 

 
A(2) = 

0 4 

6 0 

3 7 

6 



0 

Step 3: Solving the equation for, k = 3; 
 

A3 (1, 1) = min {A2 (1, 3) + A2 (3, 1), c (1, 1)} = min {(6 + 3), 0} = 0 

A3 (1, 2) = min {A2 (1, 3) + A2 (3, 2), c (1, 2)} = min {(6 + 7), 4} = 4 

A3 (1, 3) = min {A2 (1, 3) + A2 (3, 3), c (1, 3)} = min {(6 + 0), 6} = 6 

A3 (2, 1) = min {A2 (2, 3) + A2 (3, 1), c (2, 1)} = min {(2 + 3), 6} = 5 

A3 (2, 2) = min {A2 (2, 3) + A2 (3, 2), c (2, 2)} = min {(2 + 7), 0} = 0 

A3 (2, 3) = min {A2 (2, 3) + A2 (3, 3), c (2, 3)} = min {(2 + 0), 2} = 2 

A3 (3, 1) = min {A2 (3, 3) + A2 (3, 1), c (3, 1)} = min {(0 + 3), 3} = 3 

A3 (3, 2) = min {A2 (3, 3) + A2 (3, 2), c (3, 2)} = min {(0 + 7), 7} = 7 

 

2 

2 



 

5 0 

 

A3 (3, 3) = min {A2 (3, 3) + A2 (3, 3), c (3, 3)} = min {(0 + 0), 0} = 0 

 
 0 4 6 

A(3)   = 
 

2 


 
3 7 0 
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TRAVELLING SALESPERSON PROBLEM: CO4 

 
Let G = (V, E) be a directed graph with edge costs Cij. The variable cij is defined such 
that cij > 0 for all I and j and cij =  if < i, j>  E. Let |V| = n and assume n > 1. A 
tour of G is a directed simple cycle that includes every vertex in V. The cost of a tour 
is the sum of the cost of the edges on the tour. The traveling sales person problem is 
to find a tour of minimum cost. The tour is to be a simple path that starts and ends 
at vertex 1. 

 
Let g (i, S) be the length of shortest path starting at vertex i, going through all 

vertices in S, and terminating at vertex 1. The function g (1, V – {1}) is the length of 
an optimal salesperson tour. From the principal of optimality it follows that: 

g1, V - 1  min 
2  k  n 

   

c1k   g  k, V   1, k  -- 1 

Generalizing equation 1, we obtain (for i  S) 

g i, S   minci j 
j S 

 g i, S   j   -- 2 

The Equation can be solved for g (1, V – 1}) if we know g (k, V – {1, k}) for all 
choices of k. 

 

Example 1: 

 
For the following graph find minimum cost tour for the traveling salesperson 
problem: 

 

 

0 

The cost adjacency matrix =  
5
 

6 

8 

10 15 

0 9 

13 0 

8 9 

20
10 


12







Let us start the tour from vertex 1: 
 

g (1, V – {1}) =  min {c1k  + g (k, V – {1, K})} - (1) 
2<k<n 

More generally writing: 

 

g (i, s) = min {cij  + g (J, s – {J})} - (2) 

Clearly, g (i, ) = ci1 , 1 ≤ i ≤ n. So, 

g (2, ) = C21 = 5 

g (3, ) = C31 = 6 

  

  
0 

  



 

g (4, ) = C41 = 8 

Using equation – (2) we obtain: 

 
g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}, c13 + g (3, {2, 4}), c14 + g (4, {2, 3})} 

g (2, {3, 4}) = min {c23 + g (3, {4}), c24 + g (4, {3})} 
= min {9 + g (3, {4}), 10 + g (4, {3})} 

 

g (3, {4}) = min {c34 + g (4, )} = 12 + 8 = 20 
 

g (4, {3}) = min {c43 + g (3, )} = 9 + 6 = 15 
 
 



 

 

Therefore, g (2, {3, 4}) = min {9 + 20, 10 + 15} = min {29, 25} = 25 

 

g (3, {2, 4}) = min {(c32 + g (2, {4}), (c34 + g (4, {2})} 

g (2, {4}) = min {c24 + g (4, )} = 10 + 8 = 18 
 

g (4, {2}) = min {c42 + g (2, )} = 8 + 5 = 13 
 

Therefore, g (3, {2, 4}) = min {13 + 18, 12 + 13} = min {41, 25} = 25 
 

g (4, {2, 3}) = min {c42 + g (2, {3}), c43 + g (3, {2})} 

g (2, {3}) = min {c23 + g (3, } = 9 + 6 = 15 
 

g (3, {2}) = min {c32 + g (2, } = 13 + 5 = 18 

Therefore, g (4, {2, 3}) = min {8 + 15, 9 + 18} = min {23, 27} = 23 
 

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}), c13 + g (3, {2, 4}), c14 + g (4, {2, 3})} 
= min {10 + 25, 15 + 25, 20 + 23} = min {35, 40, 43} = 35 

 
The optimal tour for the graph has length = 35 

The optimal tour is: 1, 2, 4, 3, 1. 
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OPTIMAL BINARY SEARCH TREE:CO4 

 
Let us assume that the given set of identifiers is {a1, . . . , an} with a1 < a2 < . . . . < 
an. Let p (i) be the probability with which we search for ai. Let q (i) be the probability 
that the identifier x being searched for is such that ai < x < ai+1, 0 < i < n (assume 
a0 = -  and an+1 = +). We have to arrange the identifiers in a binary search tree in 
a way that minimizes the expected total access time. 
In a binary search tree, the number of comparisons needed to access an element at 

depth 'd' is d + 1, so if 'ai' is placed at depth 'di', then we want to minimize: 
n 


i 1 

Pi (1  di ) . 

 

Let P (i) be the probability with which we shall be searching for 'ai'. Let Q (i) be the 
probability of an un-successful search. Every internal node represents a point where 
a successful search may terminate. Every external node represents a point where an 
unsuccessful search may terminate. 

 
The expected cost contribution for the internal node for 'ai' is: 

P (i) * level (ai ) . 

 
Unsuccessful search terminate with I = 0 (i.e at an external node). Hence the cost 
contribution for this node is: 

 

Q (i) * level ((Ei) - 1) 

The expected cost of binary search tree is: 
 
 
 

  



 



 

n 


i  1 

n 

P(i) * level (ai) 
i  0 

 
Q (i) * level ((Ei )  1) 



 

Given a fixed set of identifiers, we wish to create a binary search tree organization. 

We may expect different binary search trees for the same identifier set to have 

different performance characteristics. 
 

The computation of each of these c(i, j)’s requires us to find the minimum of m 

quantities. Hence, each such c(i, j) can be computed in time O(m). The total time for 
all c(i, j)’s with j – i = m is therefore O(nm – m2). 

 

 
The total time to evaluate all the c(i, j)’s and r(i, j)’s is therefore: 

 nm  m2  O n3 
1 st

m
o p 

n 

 
 

 
Example 1: 

 
Let n = 4, and (a1, a2, a3, a4) = (do, if, need, while) Let P (1: 4) = (3, 3, 1, 1) and Q 
(0: 4) = (2, 3, 1, 1, 1) 

 

Solution: 

 

Table for recording W (i, j), C (i, j) and R (i, j): 

 

Column 

Row 
0 1 2 3 4 

0 2, 0, 0 3, 0, 0 1, 0, 0 1, 0, 0, 1, 0, 0 

1 8, 8, 1 7, 7, 2 3, 3, 3 3, 3, 4 
 

2 12, 19, 1 9, 12, 2 5, 8, 3 
 

3 14, 25, 2 11, 19, 2 
 

4 16, 32, 2 
 

 

This computation is carried out row-wise from row 0 to row 4. Initially, W (i, i) = Q 
(i) and C (i, i) = 0 and R (i, i) = 0, 0 < i < 4. 

 
Solving for C (0, n): 

 

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 < i < 4; i = 0, 1, 2 
and 3;  i < k ≤ J. Start with i = 0;  so j = 1; as i < k ≤ j,  so the possible value  for  
k = 1 

 

W (0, 1) = P (1) + Q (1) + W (0, 0) = 3 + 3 + 2 = 8 

C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 8 

R (0, 1) = 1 (value of 'K' that is minimum in the above equation). 

Next with i = 1; so j = 2; as i < k ≤ j, so the possible value for k = 2 

W (1, 2) = P (2) + Q (2) + W (1, 1) = 3 + 1 + 3 = 7 
C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 7 
R (1, 2) = 2 

 
Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k = 3 



 

 

 

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 = 3 
C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] = 3 

R (2, 3) = 3 

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k = 4 

W (3, 4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 = 3 
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] = 3 
R (3, 4) = 4 

 
Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 < i < 3; i = 0,  
1, 2; i < k ≤ J. Start with i = 0; so j = 2; as i < k ≤ J, so the possible values for k = 
1 and 2. 

 

W (0, 2) = P (2) + Q (2) + W (0, 1) = 3 + 1 + 8 = 12 
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))} 

= 12 + min {(0 + 7, 8 + 0)} = 19 

R (0, 2) = 1 

Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3. 
 

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 7 = 9 
C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3, 3)]} 

= W (1, 3) + min {(0 + 3), (7 + 0)} = 9 + 3 = 12 

R (1, 3) = 2 

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4. 

W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5 

C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)] 
= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 = 8 

R (2, 4) = 3 
 

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 < i < 2; i = 0, 1; 

i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2 
and 3. 

 
W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 = 14 
C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2, 3)], 

[C (0, 2) + C (3, 3)]} 

= 14 + min {(0 + 12), (8 + 3), (19 + 0)} = 14 + 11 = 25 

R (0, 3) = 2 

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4. 

W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 9 = 11 
C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3, 4)], 

[C (1, 3) + C (4, 4)]} 

= 11 + min {(0 + 8), (7 + 3), (12 + 0)} = 11 + 8 = 19 

R (1, 4) = 2 

 
Fourth, Computing all C (i, j) such that j - i = 4; j = i + 4 and as 0 < i < 1; i = 0; 
i < k ≤ J. 

 
Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and 4. 

 



 

a2  
T 04 

a1  
T 01 T 24 

a3  

T 00 T 11 T 22 T 34 

 

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16 
C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)], 

[C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]} 

= 16 + min [0 + 19, 8 + 8, 19+3, 25+0] = 16 + 16 = 32 
R (0, 4) = 2 

 
From the table we see that C (0, 4) = 32 is the minimum cost of a binary search tree 
for (a1, a2, a3, a4). The root of the tree 'T04' is 'a2'. 

 

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and the 
root of 'T24' is a3. 

 
The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is 
'a1' 

 

The left and right sub trees for T24 are T22 and T34 respectively. 

The root of T24 is 'a3'. 

The root of T22 is null 

The root of T34 is a4. 

 
 

 

a4  

 
 

 

 
Example 2: 

 
Consider four elements a1, a2, a3 and a4 with Q0 = 1/8, Q1 = 3/16, Q2 = Q3 = Q4 = 
1/16 and p1 = 1/4, p2 = 1/8, p3 = p4 =1/16. Construct an optimal binary search tree. 
Solving for C (0, n): 

 

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 < i < 4; i = 0, 1, 2 
and 3;  i < k ≤ J.  Start with i = 0; so j = 1; as i < k ≤ j,  so the  possible value for  
k = 1 

 

W (0, 1) = P (1) + Q (1) + W (0, 0) = 4 + 3 + 2 = 9 

C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 9 + [(0 + 0)] = 9 

R (0, 1) = 1 (value of 'K' that is minimum in the above equation). 

Next with i = 1; so j = 2; as i < k ≤ j, so the possible value for k = 2 

W (1, 2) = P (2) + Q (2) + W (1, 1) = 2 + 1 + 3 = 6 
C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 6 + [(0 + 0)] = 6 
R (1, 2) = 2 

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k = 3 

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 = 3 

C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] = 3 
 

if 

do re a d 

wh ile 



 

 

R (2, 3) = 3 

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k = 4 

W (3, 4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 = 3 
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] = 3 
R (3, 4) = 4 

 
Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 < i < 3; i = 0, 
1, 2; i < k ≤ J 

Start with i = 0; so j = 2; as i < k ≤ j, so the possible values for k = 1 and 2. 

W (0, 2) = P (2) + Q (2) + W (0, 1) = 2 + 1 + 9 = 12 
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))} 

= 12 + min {(0 + 6, 9 + 0)} = 12 + 6 = 18 
R (0, 2) = 1 

Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3. 
 

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 6 = 8 
C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3, 3)]} 

= W (1, 3) + min {(0 + 3), (6 + 0)} = 8 + 3 = 11 
R (1, 3) = 2 

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4. 

W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5 
C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)] 

= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 = 8 

R (2, 4) = 3 

 

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 < i < 2; i = 0, 1; 

i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2 
and 3. 

 

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 = 14 
C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2, 3)], 

[C (0, 2) + C (3, 3)]} 
= 14 + min {(0 + 11), (9 + 3), (18 + 0)} = 14 + 11 = 25 

R (0, 3) = 1 

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4. 

W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 8 = 10 
C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3, 4)], 

[C (1, 3) + C (4, 4)]} 

= 10 + min {(0 + 8), (6 + 3), (11 + 0)} = 10 + 8 = 18 

R (1, 4) = 2 
 

Fourth, Computing all C (i, j) such that J - i = 4; j = i + 4 and as 0 < i < 1; i = 0; 

i < k ≤ J. Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 
3 and 4. 

 

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16 
C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)], 

[C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]} 



 

a2  
T 04  

a1  
T 01  T 24  

a3  

T 00  T 11  T 22  T 34  

 

= 16 + min [0 + 18, 9 + 8, 18 + 3, 25 + 0] = 16 + 17 = 33 

R (0, 4) = 2 

 

Table for recording W (i, j), C (i, j) and R (i, j) 
 

Column 
Row 

0 1 2 3 4 

0 2, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0, 1, 0, 0 

1 9, 9, 1 6, 6, 2 3, 3, 3 3, 3, 4 
 

2 12, 18, 1 8, 11, 2 5, 8, 3 
 

3 14, 25, 2 11, 18, 2 
 

4 16, 33, 2 
 

 
From the table we see that C (0, 4) = 33 is the minimum cost of a binary search tree 
for (a1, a2, a3, a4) 

The root of the tree 'T04' is 'a2'. 
 

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and the 
root of 'T24' is a3. 

 
The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is 
'a1' 

 

The left and right sub trees for T24 are T22 and T34 respectively. 

The root of T24 is 'a3'. 

The root of T22 is null. 

The root of T34 is a4. 

 

 
 

a4  

 
 
 

 
Example 3: 

 

WORD 

A 

PROBABILITY 

4 
B 2 
C 1 
D 3 

E 5 
F 2 
G 1 

 
 

a2  

a1  a3  

a4  



 

 

and all other elements have zero probability. 

 

Solving c(0,n): 

 

First computing all c(i, j) such that j- i = 1;j = i +1 and as 0 ≤ i < 7; i = 0, 1, 2, 3, 
4, 5 and 6; i < k ≤ j. Start with i = 0 ; so j = 1; as i < k ≤ j, so the possible value 
for k = 1 

 

W(0, 1) = P(1) + Q(1)+W(0, 0) = 4+0+0 = 4 
C(0, 1) = W(0, 1)+ min {C (0, 0) + C(1, 1) }=4 + [ (0 + 0 ) ] = 4 

R(0, 1) = 1 

next with i = 1 ; so j = 2; as i < k ≤ j, so the possible value for k = 2 

W(1, 2) = P(2) + Q(2)+W(1, 1) = 2+0+0 = 2 
C(1, 2) = W(1, 2)+ min {C (1, 1) + C(2, 2) }=2 + [ (0 + 0 ) ] = 2 
R(1, 2) = 2 

next with i = 2 ; so j = 3; as i < k ≤ j, so the possible value for k = 3 
 

W(2, 3) = P(3) + Q(3)+W(2, 2) = 1+0+0 = 1 
C(2, 3) = W(2, 3)+ min {C (2, 2) + C(3, 3) }=1 + [ (0 + 0 ) ] = 1 
R(2, 3) = 3 

next with i = 3 ; so j = 4; as i < k ≤ j, so the possible value for k = 4 

W(3, 4) = P(4) + Q(4)+W(3, 3) = 3+0+0 = 3 
C(3, 4) = W(3, 4)+ min {C (3, 4) + C(4, 4) }=3 + [ (0 + 0 ) ] = 3 

R(3, 4) = 4 

next with i = 4 ; so j = 5; as i < k ≤ j, so the possible value for k = 5 

W(4, 5) = P(5) + Q(5)+W(4, 4) = 5+0+0 = 5 

C(4, 5) = W(4, 5)+ min {C (4, 4) + C(5, 5) }=5 + [ (0 + 0 ) ] = 5 
R(4, 5) = 5 

next with i = 5; so j = 6; as i < k ≤ j, so the possible value for k = 6 

W(5, 6) = P(6) + Q(6)+W(5, 5) = 2+0+0 = 2 
C(5, 6) = W(5, 6)+ min {C (5, 5) + C(6, 6) }=2 + [ (0 + 0 ) ] = 2 
R(5, 6) = 6 

next with i = 6; so j = 7; as i < k ≤ j, so the possible value for k = 7 

W(6, 7) = P(7) + Q(7)+W(6, 6) = 1+0+0 = 1 
C(6, 7) = W(6, 7)+ min {C (6, 6) + C(7, 7) }=1 + [ (0 + 0 ) ] = 1 

R(6, 7) = 7 
 

Second, computing all c(i, j) such that j -  i = 2 ;j = i  + 2 and as 0 ≤ i < 6; i = 0, 
1, 2, 3, 4 and 5; i < k ≤ j; Start with i = 0 ; so j = 2; as i < k ≤ j, so the possible 
values for k = 1 and 2. 

 
W(0, 2) = P(2) + Q(2)+W(0, 1) = 2 + 0 + 4 = 6 
C(0, 2) = W(0, 2)+ min {C (0, 0) + C(1, 2) ,C(0, 1) + C(2, 2)} 

= 6 +min{ 0 + 2, 4 + 0} = 8 

R(0, 2) = 1 
 



 

 

next with i = 1 ; so j = 3; as i < k ≤ j, so the possible values for k = 2 and 3. 
 

W(1, 3) = P(3) + Q(3) +W(1, 2) = 1+ 0 + 2 = 3 
C(1, 3) = W(1, 3)+ min {C (1, 1) + C(2,3) ,C(1, 2) + C(3, 3)} 

= 3 +min{ 0 + 1, 2 + 0} = 4 

R(1, 3) = 2 

next with i = 2 ; so j = 4; as i < k ≤ j, so the possible values for k = 3 and 4. 

W(2, 4) = P(4) + Q(4) +W(2, 3) = 3+ 0 + 1 = 4 
C(2, 4) = W(2, 4)+ min {C (2, 2) + C(3,4) ,C(2, 3) + C(4, 4)} 

= 4 +min{ 0 + 3, 1 + 0} = 5 
R(2, 4) = 4 

next with i = 3 ; so j = 5; as i < k ≤ j, so the possible values for k = 4 and 5. 
 

W(3, 5) = P(5) + Q(5)+W(3, 4) = 5+ 0 + 3 =8 
C(3, 5) = W(3, 5)+ min {C (3, 3) + C(4,5) ,C(3,4) + C(5, 5)} 

= 8 +min{ 0 + 5, 3 + 0} = 11 

R(3, 5) = 5 
next with i = 4 ; so j = 6; as i < k ≤ j, so the possible values for k = 5 and 6. 

 

W(4, 6) = P(6) + Q(6)+W(4, 5) = 2+ 0 + 5 = 7 
C(4, 6) = W(4, 6)+ min {C (4, 4) + C(5,6) ,C(4, 5) + C(6, 6)} 

= 7 +min{ 0 + 2, 5 + 0} = 9 

R(4, 6) = 5 

next with i = 5 ; so j = 7; as i < k ≤ j, so the possible values for k = 6 and 7. 

W(5, 7) = P(7) + Q(7)+W(5, 6) = 1+ 0 + 2 = 3 

C(5, 7) = W(5, 7)+ min {C (5, 5) + C(6,7) ,C(5, 6) + C(7, 7)} 
= 3 +min{ 0 + 1, 2 + 0} = 4 

R(5, 7) = 6 

 

Third, computing all c(i, j) such that j – i = 3 ;j = i + 3 and as 0 ≤ i < 5 ; i = 0, 1, 
2, 3, 4 and I < k ≤ j. 

Start with i = 0 ; so j = 3; as i < k ≤ j, so the possible values for k = 1,2 and 3. 

W(0, 3) = P(3) + Q(3)+W(0, 2) = 1+ 0 + 6 = 7 
C(0, 3) = W(0, 3)+ min {C (0, 0) + C(1,3) ,C(0, 1) + C(2, 3),C(0, 2) + C(3, 3)} 

= 7 +min{ 0 + 4, 4 + 1, 8 + 0} = 7 

R(0, 3) = 1 

next with i = 1 ; so j = 4; as i < k ≤ j, so the possible values for k = 2,3 and 4. 

W(1, 4) = P(4) + Q(4)+W(1, 3) = 3+ 0 + 3 = 6 
C(1, 4) = W(1, 4)+ min {C (1, 1) + C(2, 4) ,C(1, 2) + C(3, 4),C(1, 3) + C(4, 4)} 

= 6 +min{ 0 + 5, 2 + 3, 4 + 0} = 10 
R(1, 4) = 4 

next with i = 2 ; so j = 5; as i < k ≤ j, so the possible values for k = 3, 4 and 5. 

W(2, 5) = P(5) + Q(5)+W(2, 4) = 5+ 0 + 4 = 9 
C(2, 5) = W(2, 5)+ min {C (2, 2) + C(3, 5) ,C(2, 3) + C(4, 5),C(2, 4) + C(5, 5)} 

= 9 +min{ 0 + 11, 1 + 5 ,5 + 0} = 14 

R(2, 5) = 5 
 



 

 

 

next with i = 3 ; so j = 6; as i < k ≤ j, so the possible values for k = 4, 5 and 6. 
 

W(3, 6) = P(6) + Q(6)+W(3, 5) = 2+ 0 + 8 = 10 
C(3, 6) = W(3, 6)+ min {C (3, 3) + C(4, 6) ,C(3 ,4) + C(5, 6),C(3, 5) + C(6, 6)} 

= 10 +min{ 0 + 9 , 3 + 2 ,11 + 0} = 15 

R( 3, 6) = 5 

 

next with i = 4 ; so j = 7; as i < k ≤ j, so the possible values for k = 5, 6 and 7. 
 

W(4, 7) = P(7) + Q(7)+W(4, 6) = 1+ 0 + 7 = 8 
C(4, 7) = W(4, 7)+ min {C (4, 4) + C(5, 7) ,C(4 ,5) + C(6, 7),C(4, 6) + C(7, 7)} 

= 8 +min{ 0 + 4 , 5 + 1 ,9 + 0} = 12 

R(4, 7) = 5 

 

Fourth, computing all c(i, j) such that j – i = 4 ;j = i + 4 and as 0 ≤ i < 4 ; i = 0, 1, 
2, 3 for i < k ≤ j. Start with i = 0 ; so j = 4; as  i < k ≤ j, so the possible values for 

k = 1,2 ,3 and 4. 
 

W(0, 4) = P(4) + Q(4)+W(0, 3) = 3+ 0 + 7 = 10 
C(0, 4) = W(0, 4)+ min {C (0, 0) + C(1,4) ,C(0, 1) + C(2, 4),C(0, 2) + C(3, 4), 

C(0, 3) + C(4, 4)} 
= 10 +min{ 0 + 10, 4 + 5,8 + 3,11 + 0} = 19 

R(0, 4) = 2 

next with i = 1 ; so j = 5; as i < k ≤ j, so the possible values for k = 2,3 ,4 and 5. 

W(1, 5) = P(5) + Q(5)+W(1, 4) = 5+ 0 + 6 = 11 
C(1, 5) = W(1, 5)+ min {C (1, 1) + C(2, 5) ,C(1, 2) + C(3, 5),C(1, 3) + C(4, 5) 

C(1, 4) + C(5, 5)} 

= 11 +min{ 0 + 14, 2 + 11,4 + 5,10 +0} = 20 

R(1, 5) = 4 

next with i = 2 ; so j = 6; as i < k ≤ j, so the possible values for k = 3,4,5 and 6. 

W(2, 6) = P(6) + Q(6)+W(2, 5) = 2+ 0 + 9 = 11 

C(2, 6) = W(2, 6)+ min {C (2, 2) + C(3, 6) ,C(2, 3) + C(4, 6),C(2, 4) + C(5, 6) 
C(2, 5) + C (6, 6)} = 11 +min{ 0 + 15, 1 + 9 ,5 + 2,14 + 0} = 18 

R(2, 6) = 5 

next with i = 3 ; so j = 7; as i < k ≤ j, so the possible values for k = 4,5,6 and 7. 

W(3, 7) = P(7) + Q(7)+W(3, 6) = 1+ 0 +11 = 12 
C(3, 7) = W(3, 7)+ min {C (3, 3) + C(4, 7) ,C(3, 4) + C(5, 7),C(3, 5) + C(6, 7) 

C(3, 6) + C (7, 7)} = 12 +min{ 0 + 12, 3 +4 ,11 +1,15 + 0} = 19 

R(3, 7) = 5 

 

Fifth, computing all c(i, j) such that j – i = 5; j = i + 5 and as 0 ≤ i < 3; 
i = 0, 1, 2, i < k ≤ j. Start with i = 0 ; so j = 4; as i < k ≤ j, so the possible 
values for k = 1,2 ,3,4 and 5. 

 
W(0, 5) = P(5) + Q(5)+W(0, 4) = 5+ 0 + 10 = 15 
C(0, 5) = W(0, 5)+ min {C (0, 0) + C(1,5) ,C(0, 1) + C(2, 5),C(0, 2) + C(3, 5), 

C(0, 3) + C(4, 5),C(0, 4) + C(5, 5)} 

= 10 +min{ 0 + 20, 4 + 14, 8 + 11 ,19 + 0} = 28 



 

 

R(0, 5) = 2 

next with i = 1 ; so j = 6; as i < k ≤ j, so the possible values for k = 2, 3 ,4, 5 & 6. 

W(1, 6) = P(6) + Q(6)+W(1, 5) = 2+ 0 + 11 = 13 

C(1, 6) = W(1, 6)+ min {C (1, 1) + C(2, 6) ,C(1, 2) + C(3, 6),C(1, 3) + C(4, 6) 
C(1, 4) + C(5, 6),C(1, 5)+C(6, 6)} 

= 13 +min{ 0 + 18, 2 + 15, 4 + 9, 10 +2, 20 + 0} = 25 

R(1, 6) = 5 

next with i = 2 ; so j = 7; as i < k ≤ j, so the possible values for k = 3,4,5,6 and 7. 

W(2, 7) = P(7) + Q(7)+W(2, 6) = 1+ 0 + 11 = 12 
C(2, 7) = W(2, 7)+ min {C (2, 2) + C(3, 7) ,C(2, 3) + C(4, 7),C(2, 4) + C(5, 7) 

C(2, 5) + C (6, 7),C(2, 6) + C(7,7)} 
= 12 +min{ 0 + 18, 1 + 12 , 5 + 4, 14 + 1, 18 + 0} = 21 

R(2, 7) = 5 

 

Sixth, computing all c(i, j) such that j – i = 6 ;j = i + 6 and as 0 ≤ i < 2 ; i  =  0, 1 
i < k ≤ j. Start with i  = 0; so j = 6; as i < k ≤ j, so the possible values for k = 1,  
2, 3, 4 5 & 6. 
W(0, 6) = P(6) + Q(6)+W(0, 5) = 2+ 0 + 15 = 17 
C(0, 6) = W(0,6 )+ min {C (0, 0) + C(1,6) ,C(0, 1) + C(2, 6),C(0, 2) + C(3, 6), 

C(0, 3) + C(4, 6),C(0, 4) + C(5, 6),C(0, 5) + C(6, 6)} 
= 17 +min{ 0 + 25, 4 + 18, 8 + 15,19 + 2, 31 + 0} = 37 

R(0, 6) = 4 

 
next with i = 1 ; so j = 7; as i < k ≤ j, so the possible values for k = 2, 3, 4, 5, 6 
and 7. 

 
W(1, 7) = P(7) + Q(7)+W(1, 6) = 1+ 0 + 13 = 14 
C(1, 7) = W(1, 7)+ min {C (1, 1) + C(2, 7) ,C(1, 2) + C(3, 7),C(1, 3) + C(4, 7) 

C(1, 4) + C(5, 7),C(1, 5)+C(6, 7),C(1, 6) +C(7, 7)} 
= 14 +min{ 0 + 21, 2 + 18, 4 + 12, 10 + 4, 20 + 1, 21 + 0} = 28 

R(1, 7) = 5 

 
Seventh, computing all c(i, j) such that j – i = 7 ;j = i + 7 and as 0 ≤ i < 1 ; i  =  0 
i < k ≤ j. Start with i = 0 ; so j = 7; as i < k ≤ j, so the possible values for k = 1, 2, 
3, 4, 5, 6 and 7. 

 

W(0, 7) = P(7) + Q(7)+W(0, 6) = 1+ 0 + 17 = 18 
C(0, 7) = W(0, 7 )+ min {C (0, 0) + C(1, 7) ,C(0, 1) + C(2, 7),C(0, 2) + C(3, 7), 

C(0, 3) + C(4, 7),C(0, 4) + C(5, 6),C(0, 5) + C (6, 7 ),C(0, 6) + C(7, 7)} 
= 18 +min{ 0 + 28, 4 + 21, 8 + 18,19 +4, 31 + 1, 37 + 0} = 41 

R(0, 7) = 4 
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0/1 – KNAPSACK-CO4 

 
We are given n objects and a knapsack. Each object i has a positive weight wi and a 
positive value Vi. The knapsack can carry a weight not exceeding W. Fill the knapsack 
so that the value of objects in the knapsack is optimized. 

 
A solution to the knapsack problem can be obtained by making a sequence of 

decisions on the variables x1, x2, . . . . , xn. A decision on variable xi involves 
determining which of the values 0 or 1 is to be assigned to it. Let us assume that 

 

  



 

1 i i 

1 

 

decisions on the xi are made in the order xn, xn-1, . . . .x1. Following a decision on xn, 
we may be in one of two possible states: the capacity remaining in m – wn and a 
profit of pn has accrued. It is clear that the remaining decisions xn-1, . . . , x1 must be 
optimal with respect to the problem state resulting from the decision on xn. 
Otherwise, xn,. . . . , x1 will not be optimal. Hence, the principal of optimality holds. 

Fn (m) = max {fn-1  (m), fn-1 (m - wn) + pn} -- 1 

For arbitrary fi (y), i > 0, this equation generalizes to: 

Fi (y) = max {fi-1 (y), fi-1 (y - wi)  + pi} -- 2 
 

Equation-2 can be solved for fn (m) by beginning with the knowledge fo (y) = 0 for all 
y and fi (y) = - , y < 0. Then f1, f2, . . . fn can be successively computed using 
equation–2. 

 
When the wi’s are integer, we need to compute fi (y) for integer y, 0 < y < m. Since fi 

(y) = -  for y < 0, these function values need not be computed explicitly. Since  
each fi can be computed from fi - 1 in Θ (m) time, it takes Θ (m n) time to compute 
fn. When the wi’s are real numbers, fi (y) is needed for real numbers y such that 0 < 
y < m. So, fi cannot be explicitly computed for all y in this range. Even when the wi’s 
are integer, the explicit Θ (m n) computation of fn may not be the most efficient 
computation. So, we explore an alternative method for both cases. 

 
The fi (y) is an ascending step function; i.e., there are a finite number of y’s, 0 = y1 

< y2 < . . . . < yk, such that fi (y1) < fi (y2) < . . . . . < fi (yk); fi (y) = -  , y < y1; fi 
(y) = f (yk), y > yk; and fi (y) = fi (yj), yj < y < yj+1. So, we need to compute only fi 
(yj), 1 < j < k. We use the ordered set Si = {(f (yj), yj) | 1 < j < k} to represent fi 
(y). Each number of Si is a pair (P, W), where P = fi (yj) and W = yj. Notice that S0 = 
{(0, 0)}. We can compute Si+1 from Si by first computing: 

Si = {(P, W) | (P – p , W – w )  Si} 
 

Now, Si+1 can be computed by merging the pairs in Si and Si together. Note that if 

Si+1 contains two pairs (Pj, Wj) and (Pk, Wk) with the property that Pj < Pk and Wj > 
Wk, then the pair (Pj, Wj) can be discarded because of equation-2. Discarding or 
purging rules such as this one are also known as dominance rules. Dominated tuples 
get purged. In the above, (Pk, Wk) dominates (Pj, Wj). 

 

Example 1: 

 
Consider the knapsack instance n = 3, (w1, w2, w3) = (2, 3, 4), (P1, P2, P3) = (1, 2, 
5) and M = 6. 

 

Solution: 

 

Initially, fo (x) = 0, for all x and fi (x) = -  if x < 0. 

Fn (M) = max {fn-1 (M), fn-1 (M - wn) + pn} 

F3 (6)  = max (f2 (6), f2 (6 – 4) + 5} = max {f2 (6), f2 (2) + 5} 

F2 (6)  = max (f1 (6), f1 (6 – 3) + 2} = max {f1 (6), f1 (3) + 2} 
 

 



 

1 

1 

1 

1 

 

F1 (6)  = max (f0 (6), f0 (6 – 2) + 1} = max {0, 0 + 1} = 1 

F1 (3)  = max (f0 (3), f0 (3 – 2) + 1} = max {0, 0 + 1} = 1 

Therefore, F2 (6) = max (1, 1 + 2} = 3 
 

F2 (2) = max (f1 (2), f1 (2 – 3) + 2} = max {f1 (2), -  + 2} 

F1 (2) = max (f0 (2), f0 (2 – 2) + 1} = max {0, 0 + 1} = 1 

F2 (2) = max {1, -  + 2} = 1 
 

Finally, f3 (6) = max {3, 1 + 5} = 6 

 

Other Solution: 

 

For the given data we have: 

 

S0 = {(0, 0)}; S0 = {(1, 2)} 

 

S1 = (S0 U S0 ) = {(0, 0), (1, 2)} 

X - 2 = 0  => x  = 2. y – 3 = 0  => y = 3 
X - 2 = 1  => x  = 3. y – 3 = 2  => y = 5 

 

S11 = {(2, 3), (3, 5)} 

S2 = (S1 U S1 1) = {(0, 0), (1, 2), (2, 3), (3, 5)} 
 

X – 5 = 0  => x  = 5. y – 4 = 0  => y = 4 
X – 5 = 1  => x  = 6. y – 4 = 2  => y = 6 

X – 5 = 2  => x  = 7. y – 4 = 3  => y = 7 

X – 5 = 3  => x  = 8. y – 4 = 5  => y = 9 

 

S21 = {(5, 4), (6, 6), (7, 7), (8, 9)} 

S3 = (S2 U S2 ) = {(0, 0), (1, 2), (2, 3), (3, 5), (5, 4), (6, 6), (7, 7), (8, 9)} 
 

By applying Dominance rule, 

 

S3 = (S2 U S2 ) = {(0, 0), (1, 2), (2, 3), (5, 4), (6, 6)} 

From (6, 6) we can infer that the maximum Profit  pi xi = 6 and weight  xi wi = 6 
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Reliability Design- CO4 

 
The problem is to design a system that is composed of several devices connected in 
series. Let ri be the reliability of device Di (that is ri  is the probability that device i  
will function properly) then the reliability of the entire system is  ri. Even if the 
individual devices are very reliable (the ri’s are very close to one), the reliability of 
the system may not be very good. For example, if n = 10 and ri = 0.99, i < i < 10, 
then  ri = .904. Hence, it is desirable to duplicate devices. Multiply copies of the 
same device type are connected in parallel. 

 
 

  



 



j 



 

If stage i contains mi copies of device Di. Then the probability that all mi have a 
malfunction is (1 - r )

mi
. Hence the reliability of stage i becomes 1 – (1 - r )

mi
. 

i i 

 

The reliability of stage ‘i’ is given by a function i (mi). 
 

Our problem is to use device duplication. This maximization is to be carried out under 
a cost constraint. Let ci be the cost of each unit of device i and let c be the maximum 
allowable cost of the system being designed. 

 

We wish to solve: 

Maximize i mi 
1 i  n 

  

 

Subject to Ci mi  C 
1 i  n 

  

 

mi > 1 and interger, 1 < i < n 

 

 
Example 1: 

 
Design a three stage system with device types D1, D2 and D3. The costs are $30, $15 
and $20 respectively. The Cost of the system is to be no more than $105. The 
reliability of each device is 0.9, 0.8 and 0.5 respectively. 

 

Solution: 
 

We assume that if if stage I has mi devices of type i in parallel, then  i (mi) =1 – (1- 

ri)
mi 

 
Since, we can assume each ci > 0, each mi must be in the range 1 ≤ mi ≤ ui. Where: 

 

   n  
ui      C  Ci  C

J  Ci 

 
 1  

Using the above equation compute u1, u2 and u3. 

105 30 3015  20
u1    70 

30 30 

10515 3015  20 55 

u2 15 
  3 

15 

u3 
105 20 3015     20 60 

 3 
20 20 

We useS i  i:stage number and J: no. of devices in stage i  mi 

So  fo (x), x initially fo x  1 and x  0, so, So  1, 0


Compute S1, S2 and S3 as follows: 

 
S1 = depends on u1 value, as u1 = 2, so 

S1    S1, S1
1 2 

 2 



 

 
S2 = depends on u2 value, as u2 = 3, so 

 



 

1 

2 

mi 1 

1 

2 

3 

S2   S 2 , S 2 , S2 
1 2 3 

 
S3 = depends on u3 value, as u3 = 3, so 

S3   S 3, S 3 , S3 
1 2 3 

 

Now find,S
1    1f (x),  x 

f1 x  1 (1) fo  , 1 (2) f 0 ()} With devices m1 = 1 and m2 = 2 

Compute 1 (1) and 1 (2) using the formula: i mi)  1 (1  ri )
mi 

1 1  1 1  r1m 1 
= 1 – (1 – 0.9)1 = 0.9 

1 2  1 1 0.92  0.99 

S1   f1 x, x     0.9, 30
1 

 

S1  0.99 , 30  30    0.99, 60 

Therefore, S1 = {(0.9, 30), (0.99, 60)} 

Next findS 2  f (x), x 
1 2 

f2 (x)  {2 1 * f1  , 2 2 * f1  , 2 3 * f1  } 

2  1  1   1   rI   = 1 – (1 – 0.8) = 1 – 0.2 = 0.8 

 

2 2  1  1  0.8 2  0.96 

2 3  1  1  0.8 3  0.992 
 

S2  {(0.8(0.9),30  15), (0.8(0.99),60  15)} = {(0.72, 45), (0.792, 75)} 
 

S2  {(0.96(0.9),30  15 15) , (0.96(0.99),60  15  15)} 

= {(0.864, 60), (0.9504, 90)} 

 
S2  {(0.992(0.9),30  15 1515) , (0.992(0.99),60  15  1515)} 

= {(0.8928, 75), (0.98208, 105)} 

S 2  S2 , S 2 , S 2 
1 2 3 

 
By applying Dominance rule to S2: 

 
Therefore, S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)} 

 

 

Dominance Rule: 

 



 

 

If Si contains two pairs (f1, x1) and (f2, x2) with the property that f1 ≥ f2 and x1 ≤ x2, 
then (f1, x1) dominates (f2, x2), hence by dominance rule (f2, x2) can be discarded. 
Discarding or pruning rules such as the one above is known as dominance rule. 
Dominating tuples will be present in Si and Dominated tuples has to be discarded 
from Si. 

 

Case 1: if f1 ≤ f2 and x1 > x2 then discard (f1, x1) 

Case 2: if f1 > f2 and x1 < x2 the discard (f2, x2) 

Case 3: otherwise simply write (f1, x1) 

 

S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)} 

 3 1  1  1  rI  mi
 

 
= 1 – (1 – 0.5)1 = 1 – 0.5 = 0.5 

 

 3 2  1   1  0.5 2 

 3 3  1   1  0.5 3 

 0.75 

 
 0.875 



 

1 

1 

2 

3 

3 

 

S3  0.5 (0.72), 45  20, 0.5 (0.864), 60  20, 0.5 (0.8928), 75  20

S3  0.36, 65, 0.437, 80, 0.4464, 95

S3 {0.75 (0.72), 45  20  20, 0.75 (0.864), 60  20  20, 
0.75 (0.8928), 75  20  20} 

 

= {(0.54, 85), (0.648, 100), (0.6696, 115)} 

S3   0.875 (0.72), 45  20  20  20, 0.875 (0.864), 60  20  20  20, 
0.875 (0.8928), 75  20  20  20 

S3  (0.63, 105), 1.756, 120, 0.7812, 135

If cost exceeds 105, remove that tuples 
 

S3 = {(0.36, 65), (0.437, 80), (0.54, 85), (0.648, 100)} 
 

The best design has a reliability of 0.648 and a cost of 100. Tracing back for the solution 

through Si ‘s we can determine that m3 = 2, m2 = 2 and m1 = 1. 
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BACKTRACKING -CO4 

General Method: 

 

Backtracking is used to solve problem in which a sequence of objects is chosen from a 
specified set so that the sequence satisfies some criterion. The desired solution is 
expressed as an n-tuple (x1, . . . . , xn) where each xi Є S, S being a finite set. 

 

The solution is based on finding one or more vectors that maximize, minimize, or 
satisfy a criterion function P (x1, . . . . . , xn). Form a solution and check at every step 
if this has any chance of success. If the solution at any point seems not promising, 
ignore it. All solutions requires a set of constraints divided into two categories: explicit 
and implicit constraints. 

 
Definition 1: Explicit constraints are rules that restrict each xi to take on values only 

from a given set. Explicit constraints depend on the particular instance I 
of problem being solved. All tuples that satisfy the explicit constraints 
define a possible solution space for I. 

 
Definition 2: Implicit constraints are rules that determine which of the tuples in the 

solution space of I satisfy the criterion function. Thus, implicit 
constraints describe the way in which the xi’s must relate to each other. 

 For 8-queens problem: 
 

Explicit constraints using 8-tuple formation, for this problem are S= {1, 2, 3, 
4, 5, 6, 7, 8}. 

 

The implicit constraints for this problem are that no two queens can be the 
same (i.e., all queens must be on different columns) and no two queens  can 

be on the same diagonal. 

 
Backtracking is a modified depth first search of a tree. Backtracking algorithms 
determine problem solutions by systematically searching the solution space for the 

given problem instance. This search is facilitated by using a tree organization for the 
solution space. 

 

Backtracking is the procedure where by, after determining that a node can lead to 

nothing but dead end, we go back (backtrack) to the nodes parent and proceed with 
the search on the next child. 

 

A backtracking algorithm need not actually create a tree. Rather, it only needs to 

keep track of the values in the current branch being investigated. This is the way we 
implement backtracking algorithm. We say that the state space tree exists implicitly  

in the algorithm because it is not actually constructed. 
 

Terminology: 

 

  



 

Problem state is each node in the depth first search tree. 
 

Solution states are the problem states ‘S’ for which the path from the root node to 
‘S’ defines a tuple in the solution space. 

 

Answer states are those solution states for which the path from root node to s 
defines a tuple that is a member of the set of solutions. 

 

State space is the set of paths from root node to other nodes. State space tree is the 
tree organization of the solution space. The state space trees are called static trees. 
This terminology follows from the observation that the tree organizations are 

independent of the problem instance being solved. For some problems it is 
advantageous to use different tree organizations for different problem instance. In  
this case the tree organization is determined dynamically as the solution space is 
being searched. Tree organizations that are problem instance dependent are called 

dynamic trees. 

 
Live node is a node that has been generated but whose children have not yet been 
generated. 

 

E-node is a live node whose children are currently being explored. In other words, an 

E-node is a node currently being expanded. 
 

Dead node is a generated node that is not to be expanded or explored any further. 
All children of a dead node have already been expanded. 

 

Branch and Bound refers to all state space search methods in which all children of 
an E-node are generated before any other live node can become the E-node. 

 

Depth first node generation with bounding functions is called backtracking. State 

generation methods in which the E-node remains the E-node until it is dead, lead to 
branch and bound methods. 

 
Planar Graphs: 

 

When drawing a graph on a piece of a paper, we often find it convenient to permit 
edges to intersect at points other than at vertices of the graph. These points of 
interactions are called crossovers. 

 

A graph G is said to be planar if it can be drawn on a plane without any crossovers; 
otherwise G is said to be non-planar i.e., A graph is said to be planar iff it can be 

drawn in a plane in such a way that no two edges cross each other. 

 

N-Queens Problem: 

 
Let us consider, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8 

chessboard so that no two “attack”, that is, no two of them are on the same row, 

column, or diagonal. 

 
All solutions to the 8-queens problem can be represented as 8-tuples (x1, . . . . , x8), 
where xi is the column of the ith row where the ith queen is placed. 

The explicit constraints using this formulation are Si = {1, 2, 3, 4, 5, 6, 7, 8}, 1 < i < 
8. Therefore the solution space consists of 88 8-tuples. 

 
The implicit constraints for this problem are that no two xi’s can be the same (i.e., all 
queens must be on different columns) and no two queens can be on the same 
diagonal. 

 

This realization reduces the size of the solution space from 88 tuples to 8! Tuples. 

 
The promising function must check whether two queens are in the same column or 



 

diagonal: 
 

Suppose two queens are placed at positions (i, j) and (k, l) Then: 

 
 Column Conflicts: Two queens conflict if their xi values are identical. 

 Diag 45 conflict: Two queens i and j are on the same 450 diagonal if: 
 

i – j = k – l. 

 

This implies, j – l = i – k 
 

 Diag 135 conflict: 

i + j = k + l. 

 

This implies, j – l = k – i 
 

 

Therefore, two queens lie on the same diagonal if and only if: 

 

j - l = i – k 


Where, j be the column of object in row i for the ith queen and l be the column of 
object in row ‘k’ for the kth queen. 

 

To check the diagonal clashes, let us take the following tile configuration: 

 

In this example, we have: 

 

i 1 2 3 4 5 6 7 8 

xi 2 5 1 8 4 7 3 6 

 
Let us consider for the 

case whether the  queens on 3rd row and 8th row 
are conflicting or not. In this 

case (i, j) = (3, 1) and (k, l) = (8, 6). Therefore: 

 

j - l = i – k   1 - 6 = 3 – 8 
 5 = 5 

 
In the above example we have, j - l = i – k , so the two queens are attacking. 

This is not a solution. 

 

Example: 

 

Suppose we start with the feasible sequence 7, 5, 3, 1. 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



 

Step 1: 

Add to the sequence the next number in the sequence 1, 2, . . . , 8 not yet 

used. 
 

Step 2: 

If this new sequence is feasible and has length 8 then STOP with a solution. If 
the new sequence is feasible and has length less then 8, repeat Step 1. 

 

Step 3: 

If the sequence is not feasible, then backtrack through the sequence until we 

find the most recent place at which we can exchange a value. Go back to Step 
1. 

 
On a chessboard, the solution will look like: 

 

 
 
 

 

 

 

 

 

 

 

 



 

 

4 – Queens Problem: 

 

Let us see how backtracking works on the 4-queens problem. We start with the root 

node as the only live node. This becomes the E-node. We generate one child. Let us 
assume that the children are generated in ascending order. Let us assume that the 
children are generated in ascending order. Thus node number 2 of figure is generated 
and the path is now (1). This corresponds to placing queen 1 on column 1. Node 2 

becomes the E-node. Node 3 is generated and immediately killed. The next node 
generated is node 8 and the path becomes (1, 3). Node 8 becomes the E-node. 
However, it gets killed as all its children represent board configurations that cannot 

lead to an answer node. We backtrack to node 2 and generate another child, node 13. 
The path is now (1, 4). The board configurations as backtracking proceeds is as 
follows: 

 

(a) (b) (c) (d) 

 
 
 

(e) (f) (g) (h) 

The above figure shows graphically the steps that the backtracking algorithm goes 

through as it tries to find a solution. The dots indicate placements of a queen, which 
were tried and rejected because another queen was attacking. 

 
In Figure (b) the second queen is placed on columns 1 and 2 and finally settles on 

column 3. In figure (c) the algorithm tries all four columns and is unable to place the 
next queen on a square. Backtracking now takes place. In figure (d) the  second 
queen is moved to the next possible column, column 4 and the third queen is placed 

on column 2. The boards in Figure (e), (f), (g), and (h) show the remaining steps that 
the algorithm goes through until a solution is found. 
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Sum of Subsets-CO4 

 
Given positive numbers wi, 1 ≤ i ≤ n, and m, this problem requires finding all subsets 
of wi whose sums are ‘m’. 

All solutions are k-tuples, 1 ≤ k ≤ n. 

Explicit constraints: 

 xi Є {j | j is an integer and 1 ≤ j ≤ n}. 
 

Implicit constraints: 

 

 No two xi can be the same. 

 The sum of the corresponding wi’s be m. 
 

 xi < xi+1 , 1 ≤ i < k (total order in indices) to avoid generating multiple 
instances of the same subset (for example, (1, 2, 4) and (1, 4, 2) 
represent the same subset). 

 
A better formulation of the problem is where the solution subset is represented by an 
n-tuple (x1, . . . . . , xn) such that xi Є {0, 1}. 

 

The above solutions are then represented by (1, 1, 0, 1) and (0, 0, 1, 1). 

For both the above formulations, the solution space is 2n distinct tuples. 

For example, n = 4, w = (11, 13, 24, 7) and m = 31, the desired subsets are (11, 
13, 7) and (24, 7). 

 
The tree corresponds to the variable tuple size formulation. The edges are labeled 
such that an edge from a level i node to a level i+1 node represents a value for xi. At 
each node, the solution space is partitioned into sub - solution spaces. All paths from 
the root node to any node in the tree define the solution space, since any such path 
corresponds to a subset satisfying the explicit constraints. 

 

The possible paths are (1), (1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 4), (1, 3, 4), (2), (2, 
3), and so on. Thus, the left mot sub-tree defines all subsets containing w1, the next 
sub-tree defines all subsets containing w2 but not w1, and so on. 

 

Graph Coloring (for planar graphs): 

 

Let G be a graph and m be a given positive integer. We want to discover whether the 

nodes of G can be colored in such a way that no two adjacent nodes have the same 
color, yet only m colors are used. This is termed the m-colorabiltiy decision problem. 

The m-colorability optimization problem asks for the smallest integer m for which the 
graph G can be colored. 

 
Given any map, if the regions are to be colored in such a way that no two adjacent 

regions have the same color, only four colors are needed. 

  



 

 
For many years it was known that five colors were sufficient to color any map, but no 

map that required more than four colors had ever been found. After several hundred 
years, this problem was solved by a group of mathematicians with the help of a 
computer. They showed that in fact four colors are sufficient for planar graphs. 

 
The function m-coloring will begin by first assigning the graph to its adjacency matrix, 
setting the array x [] to zero. The colors are represented by the integers 1, 2, . . . , m 
and the solutions are given by the n-tuple (x1, x2, . . ., xn), where xi is the color of 
node i. 

 
A recursive backtracking algorithm for graph coloring is carried out by invoking the 
statement mcoloring(1); 

 
Algorithm mcoloring (k) 

// This algorithm was formed using the recursive backtracking schema. The graph is 
// represented by its Boolean adjacency matrix G [1: n, 1: n]. All assignments of 
// 1, 2, . . . . . , m to the vertices of the graph such that adjacent vertices are assigned 
// distinct integers are printed. k is the index of the next vertex to color. 

{ 
repeat 
{ // Generate all legal assignments for x[k]. 

NextValue  (k); // Assign to x [k] a legal color. 
If (x [k] = 0)  then return; // No new color possible 
If (k =  n) then // at most m colors have been 

// used to color the n vertices. 
write (x [1: n]); 
else mcoloring (k+1); 

} until (false); 

} 
 

Algorithm NextValue (k) 
// x [1] , . . . . x [k-1] have been assigned integer values in the range [1, m] such that 
// adjacent vertices have distinct integers. A value for x [k] is determined in the range 
// [0, m].x[k] is assigned the next highest numbered color while maintaining distinctness 

// from the adjacent vertices of vertex k. If no such color exists, then x [k] is 0. 
{ 

repeat 

{ 
 

x [k]: = (x [k] +1)  mod (m+1) // Next highest color. 

If (x [k] = 0)  then return; // All colors have been used 

for j := 1 to n do 

{ // check if this color is distinct from adjacent colors 
if ((G [k, j]  0) and (x [k] = x [j])) 

// If (k, j) is and edge and if adj. vertices have the same color. 
then break; 



 

} 

if (j = n+1)  then return; // New color found 

} until (false); // Otherwise try to find another color. 

} 

 

 

Hamiltonian Cycles: 

 
Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle (suggested 
by William Hamilton) is a round-trip path along n edges of G that visits every vertex 
once and returns to its starting position. In other vertices of G are visited in the order 
v1, v2, . . . . . , vn+1, then the edges (vi, vi+1) are in E, 1 < i < n, and the vi are  
distinct expect for v1 and vn+1, which are equal. The graph G1 contains  the 
Hamiltonian cycle 1, 2, 8, 7, 6, 5, 4, 3, 1. The graph G2 contains no Hamiltonian  
cycle. 

 

Two graphs to illustrate Hamiltonian cycle 

The backtracking solution vector (x1, . . . . . xn) is defined so that xi represents the ith 
visited vertex of the proposed cycle. If k = 1, then x1 can be any of the n vertices. To 
avoid printing the same cycle n times, we require that x1 = 1. If 1 < k < n, then xk 
can be any vertex v that is distinct from x1, x2, . . . , xk–1 and v is connected by an 
edge to kx-1. The vertex xn can only be one remaining vertex and it must be connected 
to both xn-1 and x1. 

Using NextValue algorithm we can particularize the recursive backtracking schema to 

find all Hamiltonian cycles. This algorithm is started by first initializing the adjacency 

matrix G[1: n, 1: n], then setting x[2: n] to zero and x[1] to 1, and then executing 
Hamiltonian(2). 

 

The traveling salesperson problem using dynamic programming asked for a tour that 

has minimum cost. This tour is a Hamiltonian cycles. For the simple case of a graph  
all of whose edge costs are identical, Hamiltonian will find a minimum-cost tour if a 
tour exists. 

 
Algorithm NextValue (k) 
// x [1: k-1] is a path of k – 1 distinct vertices . If x[k] = 0, then no vertex has as yet been 
// assigned to x [k]. After execution, x[k] is assigned to the next highest numbered vertex 
// which does not already appear in x [1 : k – 1] and is connected by an edge to x [k – 1]. 
// Otherwise x [k] = 0. If k = n, then in addition x [k] is connected to x [1]. 

{ 

repeat 

{ 
 

x [k] := (x [k] +1)  mod (n+1); // Next vertex. 
If (x [k] = 0) then return; 
If (G [x [k – 1], x [k]]  0) then 
{ // Is there an edge? 

for j := 1 to k – 1 do if (x [j] = x [k]) then break; 
// check for distinctness. 

If (j =  k) then // If true, then the vertex is distinct. 
If ((k < n) or ((k = n) and G [x [n], x [1]]  0)) 
then return; 

} 
} until (false); 

} 

 
 

Graph G2 Graph G1 

      

       



 

Algorithm Hamiltonian (k) 
// This algorithm uses the recursive formulation of backtracking to find all the Hamiltonian 

// cycles of a graph. The graph is stored as an adjacency matrix G [1: n, 1: n]. All cycles begin 
// at node 1. 
{ 

repeat 
{ // Generate values for x [k]. 

NextValue  (k); //Assign a legal Next value to x [k]. 

if (x [k] = 0) then return; 

if (k = n) then write (x [1: n]); 
else Hamiltonian (k + 1) 

} until (false); 

} 
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Branch and Bound General method: CO5 

 

Branch and Bound is another method to systematically search a solution space. Just 

like backtracking, we will use bounding functions to avoid generating subtrees that 

do not contain an answer node. However branch and Bound differs from backtracking 

in two important manners: 

 

1. It has a branching function, which can be a depth first search, breadth first 

search or based on bounding function. 

 

2. It has a bounding function, which goes far beyond the feasibility test as a 

mean to prune efficiently the search tree. 

 
Branch and Bound refers to all state space search methods in which all children of 
the E-node are generated before any other live node becomes the E-node 

 

Branch and Bound is the generalization of both graph search strategies, BFS and D- 
search. 

 
 A BFS like state space search is called as FIFO (First in first out) search 

as the list of live nodes in a first in first out list (or queue). 

 

 A D search like state space search is called as LIFO (Last in first out) 

search as the list of live nodes in a last in first out (or stack). 

 

Definition 1: Live node is a node that has been generated but whose children have 

not yet been generated. 

 

Definition 2: E-node is a live node whose children are currently being explored. In 

other words, an E-node is a node currently being expanded. 

 

Definition 3: Dead node is a generated node that is not to be expanded or explored 
any further. All children of a dead node have already been expanded. 

 

Definition 4: Branch-an-bound refers to all state space search methods in which all 

children of an E-node are generated before any other live node can 

become the E-node. 

 

Definition 5: The adjective "heuristic", means" related to improving problem solving 

performance". As a noun it is also used in regard to "any method or trick 

used to improve the efficiency of a problem solving problem". But 

imperfect methods are not necessarily heuristic or vice versa. "A heuristic 

(heuristic rule, heuristic method) is a rule of thumb, strategy, trick 

simplification or any other kind of device which drastically limits search  

for solutions in large problem spaces. Heuristics do not guarantee optimal 

solutions, they do not guarantee any solution at all. A useful heuristic 

offers solutions which are good enough most of the time. 
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Least Cost (LC) search: 

In both LIFO and FIFO Branch and Bound the selection rule for the next E-node in 

rigid and blind. The selection rule for the next E-node does not give any  preference 

to a node that has a very good chance of getting the search to an answer node 

quickly. 

The search for an answer node can be speeded by using an “intelligent” ranking 

function c( ) for live nodes. The next E-node is selected on the basis of this ranking 

function. The node x is assigned a rank using: 

 

c( x ) = f(h(x)) + g( x ) 

where, c( x ) is the cost of x. 

h(x) is the cost of reaching x from the root and f(.) is any non-decreasing 
function. 

 
g ( x ) is an estimate of the additional effort needed to reach an answer node 

from x. 

A search strategy that uses a cost function c( x ) = f(h(x) + g( x ) to select the next 

E-node would always choose for its next E-node a live node with least 

LC–search (Least Cost search) 

c(.) is called a 

 

BFS and D-search are special cases of LC-search. If g( x ) = 0 and f(h(x)) = level of 
node x, then an LC search generates nodes by levels. This is eventually the same as 

a BFS. If f(h(x)) = 0 and 

essentially a D-search. 

g( x ) > g( y ) whenever y is a child of x, then the search is 

 

An LC-search coupled with bounding functions is called an LC-branch and bound 

search 

We associate a cost c(x) with each node x in the state space tree. It is not possible to 

easily compute the function c(x). So we compute a estimate c( x ) of c(x). 

 
Control Abstraction for LC-Search: 

 

Let t be a state space tree and c() a cost function for the nodes in t. If x is a node in 

t, then c(x) is the minimum cost of any answer node in the subtree with root x. Thus, 

c(t) is the cost of a minimum-cost answer node in t. 

 
A heuristic c(.) is used to estimate c(). This heuristic should be easy to compute and 
generally has the property that if x is either an answer node or a leaf node, then 

c(x) = c( x ) . 

 
LC-search uses c to find an answer node. The algorithm uses two functions Least() and 

Add() to delete and add a live node from or to the list of live nodes, respectively. 

 

Least() finds a live node with least c(). This node is deleted from the list of live nodes 
and returned. 
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Add(x) adds the new live node x to the list of live nodes. The list of live nodes be 
implemented as a min-heap. 

 

Algorithm LCSearch outputs the path from the answer node it finds to the root node 

t. This is easy to do if with each node x that becomes live, we associate a field parent 

which gives the parent of node x. When the answer node g is found, the path from g 

to t can be determined by following a sequence of parent values starting from the 

current E-node (which is the parent of g) and ending at node t. 
 

Listnode = record 
{ 

Listnode * next, *parent; float cost; 

} 
 

Algorithm LCSearch(t) 

{ //Search t for an answer node 

if *t is an answer node then output *t and return; 

E := t; //E-node. 

initialize the list of live nodes to be empty; 

repeat 
{ 

for each child x of E do 

{ 

if x is an answer node then output the path from x to t and return; 

Add  (x); //x is a new live node. 
(x   parent) := E; // pointer for path to root 

} 

if there are no more live nodes then 
{ 

write (“No answer node”); 
return; 

} 

E := Least(); 
} until (false); 

} 
 

The root node is the first, E-node. During the execution of LC search, this list 

contains all live nodes except the E-node. Initially this list should be  empty.  

Examine all the children of the E-node, if one of the children is an answer node, then 

the algorithm outputs the path from x to t and terminates. If the child of E is not an 

answer node, then it becomes a live node. It is added to the list of live nodes and its 

parent field set to E. When all the children of E have been generated, E becomes a 

dead node. This happens only if none of E’s children is an answer node. Continue the 

search further until no live nodes found. Otherwise, Least(), by definition, correctly 

chooses the next E-node and the search continues from here. 

 

LC search terminates only when either an answer node is found or the entire state 

space tree has been generated and searched. 

 

Bounding: 

 

A branch and bound method searches a state space tree using any search 

mechanism in which all the children of the E-node are generated before another node 

becomes the E-node. We assume that each answer node x has a cost c(x) associated 

with it and that a minimum-cost answer node is to be found. Three common search 

strategies are FIFO, LIFO, and LC. The three search methods differ only in the 

selection rule used to obtain the next E-node. 
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A good bounding helps to prune efficiently the tree, leading to a faster exploration of 
the solution space. 

 
A cost function c(.) such that c( x ) < c(x) is used to provide lower bounds on 

solutions obtainable from any node x. If upper is an upper bound on the cost of a 

minimum-cost solution, then all live nodes x with c(x) > c( x ) > upper. The starting 

value for upper can be obtained by some heuristic or can be set to  . 

 

As long as the initial value for upper is not less than the cost of a minimum-cost 

answer node, the above rules to kill live nodes will not result in the killing of a live 

node that can reach a minimum-cost answer node. Each time a new answer node is 

found, the value of upper can be updated. 

 

Branch-and-bound algorithms are used for optimization problems where, we deal 

directly only with minimization problems. A maximization problem is easily converted 

to a minimization problem by changing the sign of the objective function. 

 

To formulate the search for an optimal solution for a least-cost answer node in a 
state space tree, it is necessary to define the cost function c(.), such that c(x) is 
minimum for all nodes representing an optimal solution. The easiest way to do this is 
to use the objective function itself for c(.). 

 
 For nodes representing feasible solutions, c(x) is the value of the objective 

function for that feasible solution. 

 

 For nodes representing infeasible solutions, c(x) = . 

 

 For nodes representing partial solutions, c(x) is the cost of the minimum-cost 

node in the subtree with root x. 

Since, c(x) is generally hard to compute, the branch-and-bound algorithm will use an 

estimate c( x ) such that c( x ) < c(x) for all x. 
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FIFO Branch and Bound:CO5 

 

A FIFO branch-and-bound algorithm for the job sequencing problem can begin with 

upper =  as an upper bound on the cost of a minimum-cost answer node. 

 

Starting with node 1 as the E-node and using the variable tuple size formulation of 

Figure 8.4, nodes 2, 3, 4, and 5 are generated. Then u(2) = 19, u(3) = 14, u(4) = 
18, and u(5) = 21. 

The variable upper is updated to 14 when node 3 is generated. Since c (4)  and  c(5) 

are greater than upper, nodes 4 and 5 get killed. Only nodes 2 and 3 remain alive. 

Node 2 becomes the next E-node. Its children, nodes 6, 7 and 8 are generated. 

Then u(6) = 9 and so upper is updated to 9. The cost 

gets killed. Node 8 is infeasible and so it is killed. 

c(7) = 10 > upper and node 7 

Next, node 3 becomes the E-node. Nodes 9 and 10 are now generated. Then u(9) = 

8 and so upper becomes 8. The cost c(10) = 11 > upper, and this node is killed. 

 

 

 

  



The next E-node is node 6. Both its children are infeasible. Node 9’s only child is also 
infeasible. The minimum-cost answer node is node 9. It has a cost of 8. 

When implementing a FIFO branch-and-bound algorithm, it is not economical to kill 

live nodes with c(x) > upper each time upper is updated. This is so because live 
nodes are in the queue in the order in which they were generated. Hence, nodes with 

c(x)  > upper are distributed in some random way in the queue. Instead, live nodes 

with c(x) > upper can be killed when they are about to become E-nodes. 
 

The FIFO-based branch-and-bound algorithm with an appropriate 

called FIFOBB. 

c(.) and u(.) is 

 

 

LC Branch and Bound: 
 

An LC Branch-and-Bound search of the tree of Figure 8.4 will begin with upper = 
and node 1 as the first E-node. 

 

When node 1 is expanded, nodes 2, 3, 4 and 5 are generated in that order. 

As in the case of FIFOBB, upper is updated to 14 when node 3 is generated and 

nodes 4 and 5 are killed as c(4) > upper and c(5) > upper. 

Node 2 is the next E-node as c(2) = 0 and c(3) = 5. Nodes 6, 7 and 8 are generated 

and upper is updated to 9 when node 6 is generated. So, node 7 is killed as c(7) = 10 

> upper. Node 8 is infeasible and so killed. The only live nodes now are nodes 3 and 
6. 

 
Node 6 is the next E-node as c(6) = 0 < c(3) . Both its children are infeasible. 

 

Node 3 becomes the next E-node. When node 9 is generated, upper is updated to 8 

as u(9) = 8. So, node 10 with c(10) = 11 is killed on generation. 

Node 9 becomes the next E-node. Its only child is infeasible. No live nodes remain. 

The search terminates with node 9 representing the minimum-cost answer node. 
 

2 3 

The path = 1  3  9 = 5 + 3 = 8 

 

Traveling Sale Person Problem: 

 

By using dynamic programming algorithm we can solve the problem with time 

complexity of O(n22n) for worst case. This can be solved by branch and bound 

technique using efficient bounding function. The time complexity of traveling sale 

person problem using LC branch and bound is O(n22n) which shows that there is no 

change or reduction of complexity than previous method. 

 
We start at a particular node and visit all nodes exactly once and come back to initial 
node with minimum cost. 

 
Let G = (V, E) is a connected graph. Let C(i, J) be the cost of edge <i, j>. cij =  if 

<i, j> E and let |V| = n, the number of vertices. Every tour starts at vertex 1 and 

ends at the same vertex. So, the solution space is given by S = {1, , 1 |  is a 

 



permutation of (2, 3, . . . , n)} and |S| = (n – 1)!. The size of S can be reduced by 
restricting S so that (1, i1, i2, . . . . in-1, 1)   S  iff  <ij, ij+1>   E,  0 < j < n - 1 and   i0 
= in =1. 

Procedure for solving traveling sale person problem: 

 

1. Reduce the given cost matrix. A matrix is reduced if every row and column is 

reduced. A row (column) is said to be reduced if it contain at least one zero and 

all-remaining entries are non-negative. This can be done as follows: 
 

a) Row reduction: Take the minimum element from first row, subtract it 

from all elements of first row, next take minimum element from the 

second row and subtract it from second row. Similarly apply the same 

procedure for all rows. 
b) Find the sum of elements, which were subtracted from rows. 

 

c) Apply column reductions for the matrix obtained after row reduction. 

 

Column reduction: Take the minimum element from first column, 

subtract it from all elements of first column, next take minimum 

element from the second column and subtract it from second column. 

Similarly apply the same procedure for all columns. 

 

d) Find the sum of elements, which were subtracted from columns. 

 

e) Obtain the cumulative sum of row wise reduction and column wise 

reduction. 
 

Cumulative reduced sum = Row wise reduction sum + column wise 
reduction sum. 

 

Associate the cumulative reduced sum to the starting state as lower 

bound and  as upper bound. 

 

2. Calculate the reduced cost matrix for every node R. Let A is the reduced cost 

matrix for node R. Let S be a child of R such that the tree edge (R, S) 

corresponds to including edge <i, j> in the tour. If S is not a leaf node, then 

the reduced cost matrix for S may be obtained as follows: 

 

a) Change all entries in row i and column j of A to . 

 

b) Set A (j, 1) to . 

 

c) Reduce all rows and columns in the resulting matrix except for rows and 
column containing only . Let r is the total amount subtracted to reduce 

the matrix. 

c)  Find  cS  cR   A i, j  r,  where  ‘r’  is  the  total  amount subtracted 

to reduce the matrix, cR indicates the lower bound of the ith node in (i, 

j) path and c S  is called the cost function. 

3. Repeat step 2 until all nodes are visited. 
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0/1 Knapsack Problem: CO5 

 
Consider the instance: M = 15, n = 4, (P1, P2, P3, P4) = (10, 10, 12, 18) and 
(w1, w2, w3, w4) = ( 2, 4, 6, 9). 

 

0/1 knapsack problem can be solved by using branch and bound technique. In this 
problem we will calculate lower bound and upper bound for each node. 

 
Place first item in knapsack. Remaining weight of knapsack is 15 – 2 = 13. Place  next 
item w2 in knapsack and the remaining weight of knapsack is 13 – 4 = 9. Place next 
item w3 in knapsack then the remaining weight of knapsack is 9 – 6 = 3. No fractions 
are allowed in calculation of upper bound so w4 cannot be placed in knapsack. 

 

Profit = P1 + P2 + P3 = 10 + 10 + 12 

So, Upper bound = 32 

 
To calculate lower bound we can place w4 in knapsack since fractions are allowed in 
calculation of lower bound. 

Lower bound = 10 + 10 + 12 + ( 
3 

X 18) = 32 + 6 = 38 

9 

Knapsack problem is maximization problem but branch and bound technique is 

applicable for only minimization problems. In order to convert maximization problem 
into minimization problem we have to take negative sign for upper bound and lower 
bound. 
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NP Hard and NP-Complete:  CO 5 

Basic concepts: 

Nondeterministic Polynomial time 

 

The problems has best algorithms for their solutions have “Computing times”, that 

cluster into two groups 

 

Group 1 Group 2 

 Problems with solution time bound 

by a polynomial of a small degree. 

 

 It also called “Tractable Algorithms” 
 

 Most Searching & Sorting 

algorithms are polynomial time 

algorithms 

 

 Ex: Ordered Search (O (log n)), 

Polynomial evaluation O(n) Sorting 

O(n.log n) 

 Problems with solution times 

not bound by polynomial 

(simply non polynomial ) 

 

 These are hard or 

intractable problems 

 

 None of the problems in this 

group has been solved by any 

polynomial time algorithm 

 

 Ex: Traveling Sales Person O(n2 

2n) Knapsack O(2n/2) 

 

No one has been able to develop a polynomial time algorithm for any problem in the 

2nd group (i.e., group 2) 

So, it is compulsory and finding algorithms whose computing times are greater than 

polynomial very quickly because such vast amounts of time to execute that even 

moderate size problems cannot be solved. 

Theory of NP-Completeness: 

Show that may of the problems with no polynomial time algorithms are computational 

time algorithms are computationally related. 

  



There are two classes of non-polynomial time problems 

 

1. NP-Hard 

2. NP-Complete 

NP Complete Problem: A problem that is NP-Complete can solved in polynomial time 

if and only if (iff) all other NP-Complete problems can also be solved in polynomial time. 

NP-Hard: Problem can be solved in polynomial time then all NP-Complete problems can 

be solved in polynomial time. 

All NP-Complete problems are NP-Hard but some NP-Hard problems are not know to be NP- 

Complete. 

Nondeterministic Algorithms: 

Algorithms with the property that the result of every operation is uniquely defined are 

termed as deterministic algorithms. Such algorithms agree with the way programs are 

executed on a computer. 

Algorithms which contain operations whose outcomes are not uniquely defined but 

are limited to specified set of possibilities. Such algorithms are called 

nondeterministic algorithms. 

The machine executing such operations is allowed to choose any one of these 

outcomes subject to a termination condition to be defined later. 

To specify nondeterministic algorithms, there are 3 new 

sful completion 

 

 

Example for Non Deterministic algorithms: 

 



Algorithm Search(x){ 

//Problem is to search an element x 

//output J, such that A[J]=x; or J=0 if x is not 

in A J:=Choice(1,n); 

if( A[J]:=x) then { 

Write(J); 

Success()

; 

} 

else{ 

write(0)

; 

failure()

; 

       } 

Whenever there is a set of choices 

that leads to a successful 

completion then one such set of 

choices is always made and the 

algorithm terminates. 

A Nondeterministic algorithm 

terminates unsuccessfully if and 

only if (iff) there exists no set of 

choices leading to a successful 

signal. 

Nondeterministic Knapsack algorithm 

Algorithm DKP(p, w, n, m, r, x){  

W:=0;  

P:=0;  

for i:=1 to n do{ p or w) 

x[i]:=choice(0, 1);  

W:=W+x[i]*w[i];  

P:=P+x[i]*p[i];  

}  

if( (W>m) or (P<r) ) then Failure();  

else Success();  

}  



 

 

The Classes NP-Hard & NP-Complete: 

For measuring the complexity of an algorithm, we use the input length as the 

parameter. For example, An algorithm A is of polynomial complexity p() such that the 

computing time of A is O(p(n)) for every input of size n. 

Decision problem/ Decision algorithm: Any problem for which the answer is either 

zero or one is decision problem. Any algorithm for a decision problem is termed a 

decision algorithm. 

Optimization problem/ Optimization algorithm: Any problem that involves the 

identification of an optimal (either minimum or maximum) value of a given cost 

function is known as an optimization problem. An optimization algorithm is used to 

solve an optimization problem. 

 

P

polynomial time. 

is the set of all decision problems solvable by nondeterministic algorithms 

in polynomial time. 

 

Since deterministic algorithms are just a special case of nondeterministic, by this 

we concluded that P ⊆ NP 

     

Commonly believed relationship between P & NP 

The most famous unsolvable problems in Computer Science is Whether P=NP or 

P≠NP In considering this problem, s.cook formulated the following question. 

If there any single problem in NP, such that if we showed it to be in ‘P’ then that 

would imply that P=NP. 

Cook answered this question with 

 

Theorem: Satisfiability is in P if and only if (iff) P=NP 

 

 

 

Let L1 and L2 be problems, Problem L1 reduces to L2 (written L1 α L2) iff there is a 

way to solve L1 by a deterministic polynomial time algorithm using a deterministic 

algorithm that solves L2 in polynomial time 

This implies that, if we have a polynomial time algorithm for L2, Then we can solve L1 in 

polynomial time. 

L1 α L2 and L2 α L3 then L1 α L3 

 

A problem L is NP-Hard if and only if (iff) satisfiability reduces to L ie., Statisfiability α L 

 

A problem L is NP-Complete if and only if (iff) L is NP-Hard and L Є NP 



 

 

 

Commonly believed relationship among P, NP, NP-Complete and NP-Hard 

 

Most natural problems in NP are either in P or NP-complete. 

Examples of NP-complete problems: 

 Packing problems: SET-PACKING, INDEPENDENT-SET. 

 Covering problems: SET-COVER, VERTEX-COVER. 

 Sequencing problems: HAMILTONIAN-CYCLE, TSP. 

 Partitioning problems: 3-COLOR, CLIQUE. 

 Constraint satisfaction problems: SAT, 3-SAT. 

 Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK. 

Cook’s Theorem: States that satisfiability is in P if and only if 
P=NP If P=NP then satisfiability is in P 

If satisfiability is in P, then 

P=NP To do this 

  

 algorithm 

Then formula Q(A, I), Such that Q is satisfiable iff ‘A’ has a successful 

termination with Input I. 

 If the length of ‘I’ is ‘n’ and the time complexity of A is p(n) for some 

polynomial p() then length of Q is O(p3(n) log n)=O(p4(n)) 

The time needed to construct Q is also O(p3(n) log n). 

 A deterministic algorithm ‘Z’ to determine the outcome of ‘A’ on any 

input  ‘I’ 

Algorithm Z computes ‘Q’ and then uses a deterministic algorithm for the 

satisfiability problem to determine whether ‘Q’ is satisfiable. 

 If O(q(m)) is the time needed to determine whether a formula of length 

‘m’ is satisfiable then the complexity of ‘Z’ is O(p3(n) log n + 

q(p3(n)log n)). 

 If satisfiability is ‘p’, then ‘q(m)’ is a polynomial function of ‘m’ and the 

complexity of ‘Z’ becomes ‘O(r(n))’ for some polynomial ‘r()’. 

 Hence, if satisfiability is in p, then for every nondeterministic algorithm A 

in NP, we can obtain a deterministic Z in p. 

By this we shows that satisfiability is in p then P=NP 
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